ON FUZZY UPPER AND LOWER ALMOST CONTRA e*-CONTINUOUS MULTIFUNCTIONS

M. Sujatha

Department of Mathematics, Padmavani Arts and Science College for Women, Salem M. Angayarkanni Department of Mathematics, Kandaswamy Kandar's College, P-Velur, TamilNadu B. Vijayalakshmi Department of Mathematics, Government Arts College, Chidambaram, TamilNadu A. Vadivel Department of Mathematics, Government Arts College (Autonomous), Karur, Tamil Nadu

Abstract In this paper, we introduce the concepts of fuzzy upper and fuzzy lower almost contra e^* -continuous multifunctions, fuzzy upper and fuzzy lower weakly contra e^* -continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these fuzzy upper (resp. fuzzy lower) almost contra e^* -continuous, fuzzy upper (resp. lower) weakly contra e^* -continuous multifunctions are presented and their mutual relationships are established in *L*-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied.

Keywords and phrases: fuzzy upper (resp. fuzzy lower) almost contra e^* -continuous multifunction, fuzzy upper (resp. lower) weakly contra e^* -continuous multifunction.

AMS (2000) subject classification: 54A40, 54C08, 54C60.

Introduction

Kubiak [17] and \hat{S} ostak [24] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces (originally called (L-) fuzzy topological spaces by Chang [5] and Goguen [9]. It is the grade of openness of an L-fuzzy set. A general approach to the study of topological type structures on fuzzy powersets was developed in [[10]-[12], [17], [18], [24]-[26]].

Berge [4] introduced the concept multimapping F:XY where X and Y are topological spaces. After Chang introduced the concept of fuzzy topology [5], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many authors from different view points (eg. see [2], [3], [20]-[22]). Tsiporkova et al., [30] introduced the continuity of fuzzy multivalued mappings in the Chang's fuzzy topology [5]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana et al. [27] introduced the concept of r-fuzzy e-continuity in Šostak's fuzzy topological spaces. Vadivel et. al., [31] introduced the concept of fuzzy almost e-continuity, fuzzy e-compactness in a fuzzy topological space in the sense of \hat{S} ostak [24]. Dhanasekaran et.al [8] introduced the concept of fuzzy upper and fuzzy lower almost contra e-continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower almost contra e^* -continuous multifunctions, fuzzy upper and fuzzy lower weakly contra e^* -continuous multifunction on fuzzy topological spaces in \hat{S} ostak sense. Several characterizations and properties of these multifunctions are presented and their mutual relationships are established in *L*-fuzzy topological spaces. Later, composition and union between these multifunctions have been studied.

Throughout this paper, nonempty sets will be denoted by X, Y etc., L = [0,1] and $L_0 = (0,1]$. The family of all fuzzy sets in X is denoted by L^X . The complement of an L-fuzzy set λ is denoted by λ^c . This symbol " for a multifunction.

For $\alpha \in L$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$. A fuzzy point x_t for $t \in L_0$ is an element of L^X such that $x_t(y) = (ty=x \text{ 0ify } x. \text{ The family of all fuzzy points in } X$ is denoted by Pt(X). A fuzzy point $x_t \in \lambda$ iff $t \leq \lambda(x)$.

All other notations are standard notations of *L*-fuzzy set theory.

2.Preliminaries

Definition 2.11 [1] Let $F: X^{"}Y$, then F is called a fuzzy multifunction (FM, for short) if and only if $F(x) \in L^{Y}$ for each $x \in X$. The degree of membership of y in F(x) is denoted by $F(x)(y) = G_F(x, y)$ for any $(x, y) \in X \times Y$. The domain of F, denoted by domain(F) and the range of F, denoted by rng(F), for any $x \in X$ and $y \in Y$, are defined by : $dom(F)(x) = \bigvee_{y \in Y} G_F(x, y) and rng(F)(y) = \bigvee_{x \in X} G_F(x, y).$

Definition 2.2 2 [1] Let $F: X^{"}Y$ be a FM. Then F is called:

• Normalized iff for each $x \in X$, there exists $y_0 \in Y$ such that $G_F(x, y_0) = \overline{1}$.

• A crisp iff $G_F(x, y) = \overline{1}$ for each $x \in X$ and $y \in Y$.

Definition 2.3 3 [1] Let F: X^TY be a FM. Then

• The image of $\lambda \in L^X$ is an *L*-fuzzy set $F(\lambda) \in L^Y$ defined by

 $F(\lambda)(y) = \bigvee_{x \in Y} [G_F(x, y) \wedge \lambda(x)].$

• The lower inverse of $\mu \in L^Y$ is an L-fuzzy set $F^l(\mu) \in L^X$ defined by $F^{l}(\mu)(x) = \bigvee_{v \in Y} [G_{F}(x, y) \land \mu(y)].$

• The upper inverse of $\mu \in L^Y$ is an L-fuzzy set $F^u(\mu) \in L^X$ defined by $F^{u}(\mu)(x) = \bigwedge_{y \in Y} [G^{c}_{F}(x, y) \lor \mu(y)].$

Theorem 2.14 [1] Let F: X["]Y be a FM. Then

- $F(\lambda_1) \leq F(\lambda_2)$ if $\lambda_1 \leq \lambda_2$.
- $F^{l}(\mu_{1}) \leq F^{l}(\mu_{2})$ and $F^{u}(\mu_{1}) \leq F^{u}(\mu_{2})$ if $\mu_{1} \leq \mu_{2}$.
- $F^{l}(\mu^{c}) = (F^{u}(\mu))^{c}$.
- $F^{u}(\mu^{c}) = (F^{l}(\mu))^{c}$.
- $F(F^u(\mu)) \le \mu$ if F is a crisp.
- $F^u(F(\lambda)) \ge \lambda$ if F is a crisp.

Definition 2.45 [1] Let $F: X^{"}Y$ and $H: Y^{"}Z$ be two FM. Then the composition $H \circ F$ is defined by $((H \circ F)(x))(z) = \bigvee_{y \in Y} [G_F(x, y) \wedge G_H(y, z)].$

Theorem 2.2.6 [1] Let F: X"Y and H: Y"Z be FM. Then we have the following

• $(H \circ F) = F(H)$.

- $(H \circ F)^u = F^u(H^u).$
- $(H \circ F)^l = F^l(H^l).$

Theorem 2.37 [1] Let F_i : X^{*}Y be a FM. Then we have the following

- $(\bigcup_{i\in\Gamma} F_i)(\lambda) = \bigvee_{i\in\Gamma} F_i(\lambda).$
- $(\bigcup_{i\in\Gamma} F_i)^l(\mu) = \bigvee_{\substack{i\in\Gamma\\i\in\Gamma}} F_i^l(\mu).$ $(\bigcup_{i\in\Gamma} F_i)^u(\mu) = \bigwedge_{i\in\Gamma} F_i^u(\mu).$

Definition 2.58 [12,17,19,24] An L-fuzzy topological space (L-fts, in short) is a pair (X, τ) , where X is a nonempty set and $\tau: L^X \to L$ is a mapping satisfying the following properties.

- $\tau(\overline{0}) = \tau(\overline{1}) = 1$,
- $\tau(\mu_1 \land \mu_2) \ge \tau(\mu_1) \land \tau(\mu_2)$, for any $\mu_1, \mu_2 \in I^X$.
- $\tau(\bigvee_{i\in\Gamma}\mu_i) \ge \wedge_{i\in\Gamma}\tau(\mu_i)$, for any $\{\mu_i\}_{i\in\Gamma} \subset I^X$,

Then τ is called an L-fuzzy topology on X. For every $\lambda \in L^X$, $\tau(\lambda)$ is called the degree of openness of the L-fuzzy set λ . A mapping $f:(X,\tau) \to (Y,\eta)$ is said to be continuous with respect to L-fuzzy topologies τ and η iff $\tau(f^{-1}(\mu)) \ge \eta(\mu)$ for each $\mu \in L^{Y}$.

Theorem 2.4 9 [6,15,16,19] Let (X,τ) be a an L-fts. Then for each $\lambda \in L^X, r \in L_0$, we define L-fuzzy operators C_{τ} and I_{τ} : $L^X \times L_0 \to L^X$ as follows:

 $C_{\tau}(\lambda, r) = \wedge \{ \mu \in L^X : \lambda \le \mu, \tau(\overline{1} - \mu) \ge r \}.$

 $I_{\tau}(\lambda, r) = \forall \{ \mu \in L^X : \lambda \ge \mu, \tau(\mu) \ge r \}.$

For $\lambda, \mu \in L^X$ and $r, s \in L_0$, the operator C_τ satisfies the following conditions:

- $C_{\tau}(\overline{0}, r) = \overline{0}$
- $\lambda \leq C_{\tau}(\lambda, r)$,
- $C_{\tau}(\lambda, r) \vee C_{\tau}(\mu, r) = C_{\tau}(\lambda \vee \mu, r),$
- $C_{\tau}(C_{\tau}(\lambda, r), r) = C_{\tau}(\lambda, r),$
- $C_{\tau}(\lambda, r) = \lambda$ iff $\tau(\lambda^c) \ge r$.
- $C_{\tau}(\lambda^{c}, r) = (I_{\tau}(\lambda, r))^{c}$ and $I_{\tau}(\lambda^{c}, r) = (C_{\tau}(\lambda, r))^{c}$.

Definition 2.610 [1] Let $F: X^{"}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called:

• Fuzzy upper semi (or Fuzzy upper) (in short, FUS (or FU))-continuous at a L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \wedge dom(F) \le F^{u}(\mu)$. F is FU-continuous iff it is *FU*-continuous at every $x_t \in dom(F)$.

• Fuzzy lower semi (or Fuzzy lower) (in short, FLS (or FL))-continuous at a L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu) \ge r$, there exists $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \le F^{l}(\mu)$. F is FL-continuous iff it is *FL*-continuous at every $x_t \in dom(F)$.

• Fuzzy continuous if it is FU-continuous and FL-continuous.

Theorem 2.511 [1] Let $F: X^{\circ}Y$ be a fuzzy multifunction between two L-fts's (X, τ) and (Y, η) . Let $\mu \in L^{Y}$. Then we have the following

• *F* is *FL*-continuous iff $\tau(F^l(\mu)) \ge \eta(\mu)$.

- If F is normalized, then F is FU-continuous iff $\tau(F^u(\mu)) \ge \eta(\mu)$.
- *F* is *FL*-continuous iff $\tau(1 F^u(\mu)) \ge \eta(1 \mu)$.

• If F is normalized, then F is FU-continuous iff $\tau(\overline{1} - F^{l}(\mu)) \ge \eta(\overline{1} - \mu)$.

Definition 2.7 12 [13] Let $F: X^{"}Y$ be a FM between two L-fts's $(X, \tau), (Y, \eta)$ and $r \in L_0$. Then F is called:

• Fuzzy upper almost contra continuous (FUAC-continuous, for short) at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^{Y}$ and μ is r-frc there exist $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \wedge dom(F) \le F^{u}(\mu)$.

• Fuzzy lower almost contra continuous (*FLAC*-continuous, for short) at any *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^1(\mu)$ for each $\mu \in L^{Y}$ and μ is r-frc there exist $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \le F^{l}(\mu)$.

• FUAC-continuous (resp. FLAC-continuous) iff it is FUAC-continuous (resp. FLAC-continuous) at every $x_t \in dom(F)$. **Definition 2.8 13** [13] Let $F: X^{T}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_{0}$. Then F is called.

• Fuzzy upper weakly contra continuous (*FUWC*-continuous, in short) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^{Y}$ and μ is *r*-fuzzy closed, there exist $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \wedge dom(F) \le F^{u}(C_{\eta}(\mu, r))$.

• Fuzzy lower weakly contra continuous (*FLWC*-continuous, in short) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^1(\mu)$ for each $\mu \in L^{Y}$ and μ is r-fuzzy closed, there exist $\lambda \in L^{X}$, $\tau(\lambda) \ge r$ and $x_{t} \in \lambda$ such that $\lambda \le F^{l}(C_{n}(\mu, r))$.

• FUWC -continuous (resp. FLWC -continuous) iff it is FUWC -continuous (resp. FLWC -continuous) at every $x_t \in$ dom(F).

Definition 2.9 14 [14] Let (X, τ) be a fts. For $\lambda, \mu \in I^X$ and $r \in I_0$, λ is called r-fuzzy regular open (for short, r-fro) (resp. r-fuzzy regular closed (for short, r-frc)) if $\lambda = I_{\tau}(C_{\tau}(\lambda, r), r)$ (resp. $\lambda = C_{\tau}(I_{\tau}(\lambda, r), r)$).

Definition 2.10 15 [14] Let (X, τ) be a fts. Then for each $\mu \in I^X$, $x_t \in P_t(X)$ and $r \in I_0$,

• μ is called r-open Q_{τ} -neighbourhood of x_t if $x_t q \mu$ with $\tau(\mu) \ge r$.

• μ is called r-open R_{τ} -neighbourhood of x_t if $x_t q \mu$ with $\mu = I_{\tau}(C_{\tau}(\mu, r), r)$.

We denoted

$$Q_{\tau}(x_t, r) = \{ \mu \in I^X : x_t q \mu, \tau(\mu) \ge r \},\$$
$$R_{\tau}(x_t, r) = \{ \mu \in I^X : x_t q \mu, \mu = I_{\tau}(C_{\tau}(\mu, r), r) \}.$$

Definition 2.11 16 [14] Let (X, τ) be a fts. Then for each $\lambda \in I^X$, $x_t \in P_t(X)$ and $r \in I_0$,

• x_t is called r- τ cluster point of λ if for every $\mu \in Q_{\tau}(x_t, r)$, we have $\mu q \lambda$.

• x_t is called r- δ cluster point of λ if for every $\mu \in R_\tau(x_t, r)$, we have $\mu q \lambda$. • An δ -closure operator is a mapping $D_\tau: I^X \times I \to I^X$ defined as follows: $\delta C_\tau(\lambda, r)$ or $D_\tau(\lambda, r) = \bigvee \{x_t \in P_t(X): x_t \text{ is } x_t \in P_t(X): x_t \}$ r- δ -cluster point of λ }.

Equivalently, $\delta C_{\tau}(\lambda, r) = \wedge \{\mu \in I^X : \mu \ge \lambda, \mu isar - \text{frcset}\}$ and $\delta I_{\tau}(\lambda, r) = \vee \{\mu \in I^X : \mu \le \lambda, \mu isar - \text{frcset}\}$.

Definition 2.12 17 [14] Let (X, τ) be a fuzzy topological space. For $\lambda \in I^X$ and $r \in I_0$, λ is called r-fuzzy δ -closed iff $\lambda =$ $\delta C_{\tau}(\lambda, r)$ or $D_{\tau}(\lambda, r)$.

Definition 2.1318 [27] Let (X, τ) be a an L-fts. Then for each $\lambda, \mu \in L^X, r \in L_0$. Then λ is called

• λ is called an *r*-fuzzy *e*-open (briefly, *r*-feo) set if $\lambda \leq C_{\tau}(\delta_{\tau}(\lambda, r), r) \vee I_{\tau}(\delta C_{\tau}(\lambda, r), r)$.

• λ is called an *r*-fuzzy *e*-closed (briefly, *r*-feo) set if $C_{\tau}(\delta I_{\tau}(\lambda, r), r) \wedge I_{\tau}(\delta C_{\tau}(\lambda, r), r) \leq \lambda$.

Definition 2.1419 [27] Let (X, τ) be an L-fts. Then for each $\lambda, \mu \in L^X, r \in L_0$. Then λ is called

• $eI_{\tau}(\lambda, r) = \forall \{ \mu \in I^X : \mu \le \lambda, \mu \text{ is a r-feo set } \}$ is called the *r*-fuzzy e-interior of λ .

• $eC_{\tau}(\lambda, r) = \land \{\mu \in I^X : \mu \ge \lambda, \mu \text{ is a r-fec set }\}$ is called the *r*-fuzzy e-closure of λ .

Definition 2.15 20 [23,28] Let $F: X^{\cdot}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called:

• Fuzzy upper contra e (FUCe, in short) (resp. FUe)-continuous any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu^{c}) \ge r$ (resp. $\eta(\mu) \ge r$) there exist r-fuzzy e-open set (r-feo set, in short), $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \land$ $dom(F) \leq F^u(\mu).$

• Fuzzy lower contra e (FLCe, in short) (resp. FLe)-continuous any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^{Y}$ and $\eta(\mu^{c}) \ge r$ (resp. $\eta(\mu) \ge r$) there exist r-fuzzy e-open set (r-feo set, in short), $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \le L^{Y}$ $F^{l}(\mu)$.

• FUCe (resp. FLCe, FUe and FLe)-continuous iff it is FUCe (resp. FLCe, FUe and FLe)-continuous at every $x_t \in dom(F)$. **Definition 2.16 21** [7] Let $F: X^{*}Y$ be a FM between two L-fts's $(X, \tau), (Y, \eta)$ and $r \in L_{0}$. Then F is called:

• Fuzzy upper e^* (in short, FUe^*)-irresolute at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and *r*-fe^{*}o set, there exists *r*-fe^{*}o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \leq F^u(\mu)$.

• Fuzzy lower e^* (in short, FLe^*)-irresolute at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and *r*-fe^{*}o set, there exists *r*-fe^{*}o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$.

• *FUe*^{*}-irresolute and FLe^{*}-irresolute iff it is *FUe*^{*}-irresolute and FLe^{*}-irresolute at every $x_t \in dom(F)$.

Definition 2.17 22 [28] Let (X, τ) be an L-fts. Then for each $\lambda \in L^X$ and $r \in L_0$ we define L-fuzzy operator $e - ker_{\tau} : L^X \times L^X$ $L_0 \rightarrow L^X$ as follows:

 $e - ker_{\tau}(\lambda, r) = \land \{ \mu \in L^X : \lambda \le \mu, \mu \text{ is } r \text{-feo-set} \}.$

Lemma 2.123 [28] For λ in an L-fts (X, τ) , if λ is r-feo-set then $\lambda = e - ker_{\tau}(\lambda, r)$.

3.Fuzzy upper and lower almost contra e^* -continuous multifunctions

Definition 3.124 Let $F: X^{\circ}Y$ be a FM between two L-fts's $(X, \tau), (Y, \eta)$ and $r \in L_0$. Then F is called:

• Fuzzy upper almost contra e^* -continuous (FUACe*-continuous, in short) at any L-fuzzy point $x_t \in dom(F)$ iff $x_t \in dom(F)$ $F^{u}(\mu)$ for each $\mu \in L^{Y}$ and μ is r-frc, there exist r-fe^{*}o set $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \wedge dom(F) \leq F^{u}(\mu)$.

• Fuzzy lower almost contra e^* -continuous (*FLACe*^{*}-continuous, in short) at any *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in dom(F)$

 $F^{l}(\mu)$ for each $\mu \in L^{Y}$ and μ is r-frc, there exist r-fe^{*}o set $\lambda \in L^{X}$ and $x_{t} \in \lambda$ such that $\lambda \leq F^{l}(\mu)$.

• Fuzzy upper almost contra e^* -continuous (resp. Fuzzy lower almost contra e^* -continuous) iff it is $FUACe^*$ -continuous (resp. $FLACe^*$ -continuous) at every $x_t \in dom(F)$.

Proposition 3.1 25 *F* is normalized implies *F* is *FUACe*^{*}-continuous at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and μ is *r*-frc there exists *r*-fe^{*} o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^u(\mu)$.

Theorem 3.1 26 Let $F: X^{\circ}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $\mu \in L^{Y}$, then the following are equivalent:

• *F* is *FLACe*^{*}-continuous.

• $F^{l}(\mu)$ is r-fe^{*}o set, for any μ is r-frc.

• $\overline{1} - F^u(\mu)$ is *r*-fe^{*}o set, for any μ is *r*-fro.

• $\overline{1} - F^u(I_\eta(\mathcal{C}_\eta(\mu, r), r))$ is $r \cdot fe^*$ o-set, for any $\eta(\mu) \ge r$.

• $F^{l}(C_{\eta}(I_{\eta}(\mu, r), r))$ is r-fe^{*}o-set, for any $\eta(\overline{1} - \mu) \ge r$.

Proof. (i) \Rightarrow (ii): Let $x_t \in dom(F), \mu \in L^Y$, μ is r-frc and $x_t \in F^l(\mu)$, then there exist r-fe^{*}o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$ and hence $x_t \in e^*I_\tau(F^l(\mu), r)$. Therefore, we obtain $F^l(\mu) \leq e^*I_\tau(F^l(\mu), r)$. Thus $F^l(\mu)$ is r-fe^{*}o set.

(ii) \Rightarrow (i): Let $x_t \in dom(F), \mu \in L^Y$, μ is r-frc and $x_t \in F^l(\mu)$ we have by (ii), $F^l(\mu)$ is r-fe^{*}o-set. Let $F^l(\mu) = \lambda(say)$, then there exists r-fe^{*}o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(\mu)$. Thus F is FLACe^{*}-continuous.

(ii) \Rightarrow (iii): Let $\mu \in L^Y$ and μ is r-fro, hence by (ii), $F^l(\overline{1} - \mu) = \overline{1} - F^u(\mu)$ is r-fe^{*}o set.

(iii) \Rightarrow (ii): It is similar to that of (ii) \Rightarrow (iii).

(iii) \Rightarrow (iv): Let $\mu \in L^{\gamma}$ and $\eta(\mu) \ge r$. Since $I_{\eta}(C_{\eta}(\mu, r), r)$ is r-fro, then $\overline{1} - F^{u}(I_{\eta}(C_{\eta}(\mu, r), r))$ is r-fe^{*}o set.

(iv) \Rightarrow (iii): Obvious.

(iv) \Rightarrow (v): Let $\mu \in L^{Y}$ and $\eta(\overline{1} - \mu) \ge r$ hence by (iv), $\overline{1} - F^{u}(I_{\eta}(C_{\eta}(\overline{1} - \mu, r), r)) = F^{l}(C_{\eta}(I_{\eta}(\mu, r), r))$ is r-fe^{*}o set. (v) \Rightarrow (ii): Obvious.

We state the following result without proof in view of the above theorem.

Theorem 3.2 27 Let $F: X^{"}Y$ be a FM and normalized between two L-fts's (X, τ) , (Y, η) and $\mu \in L^{Y}$, then the following are equivalent:

- *F* is *FUACe*^{*}-continuous.
- $F^{u}(\mu)$ is r-fe*o-set for any μ is r-frc.
- $\overline{1} F^{l}(\mu)$ is *r*-fe^{*}o-set for any μ is *r*-fro.
- $\overline{1} F^l(I_n(\mathcal{C}_n(\mu, r), r))$ is $r \cdot fe^*$ o set for any $\eta(\mu) \ge r$.
- $F^u(C_n(I_n(\mu, r), r))$ is r-fe^{*}o set for any $\eta(\overline{1} \mu) \ge r$.

Proof. This can be proved in a similar way as Theorem (3.1)

Remark 3.128 The following implications hold.

- FUCe-continuous \Rightarrow FUACe^{*}-continuous \Leftarrow FUAC-continuous.
- *FLCe*-continuous \Rightarrow *FLACe*^{*}-continuous \leftarrow *FLAC*-continuous.
- In general the converses are not true.

Example 3.129 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and F: X Y be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = 0.7$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{1}$, and $G_F(x_2, y_3) = 0.6$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as $\lambda_1(x_1) = 0.4$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.3$, $\lambda_2(x_2) = 0.4$, μ_1 and μ_2 be a fuzzy subsets of Y defined as $\mu_1(y_1) = 0.5$, $\mu_1(y_2) = 0.5$, $\mu_1(y_3) = 0.5$ and $\mu_2(y_1) = 0.5$, $\mu_2(y_2) = 0.6$, $\mu_2(y_3) = 0.7$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy

topologies
$$\tau: L^{X} \to L$$
 and $\eta: L^{Y} \to L$ as follows: $\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \lambda = \lambda_{1} \\ 0 & \text{otherwise} \end{cases}$ $\eta(\mu) = \begin{cases} 1 & \text{if } \mu = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{2} \\ 0 & \text{otherwise} \end{cases}$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, $\overline{1} - \mu_1$ is $\frac{1}{2}$ frc set in Y and $F^u(\overline{1} - \mu_1) = \mu_1$ is $\frac{1}{2}$ -fe^{*} o set in X. Hence F is FUACe^{*}-continuous but not FUCe-continuous. As $\overline{1} - \mu_2$ is closed in (Y, η) , $F^u(\overline{1} - \mu_2) = \lambda_2$ is not $\frac{1}{2}$ -feo set in (X, τ) .

Example 3.230 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X^{"}Y$ be a FM defined by $G_F(x_1, y_1) = 0.8$, $G_F(x_1, y_2) = 1$, $G_F(x_1, y_3) = 0.3$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{1}$, and $G_F(x_2, y_3) = 0.6$. Let λ_1 and λ_2 be a fuzzy subset of X be defined as $\lambda_1(x_1) = 0.4$, $\lambda_1(x_2) = 0.1$; $\lambda_2(x_1) = 0.3$, $\lambda_2(x_2) = 0.3$, μ_1 and μ_2 be a fuzzy subsets of Y defined as $\mu_1(y_1) = 0.5$, $\mu_1(y_2) = 0.5$, $\mu_1(y_3) = 0.5$ and $\mu_2(y_1) = 0.7$, $\mu_2(y_2) = 0.7$, $\mu_2(y_3) = 0.7$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy

topologies
$$\tau: L^{X} \to L$$
 and $\eta: L^{Y} \to L$ as follows: $\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \lambda = \lambda_{1} \\ 0 & \text{otherwise} \end{cases}$ $\eta(\mu) = \begin{cases} 1 & \text{if } \mu = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \mu = \mu_{1}, \mu_{2} \\ 0 & \text{otherwise} \end{cases}$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, as $\overline{1} - \mu_1$ is $\frac{1}{2}$ -frc set in Y and $F^l(\overline{1} - \mu_1) = \mu_1$ is $\frac{1}{2}$ -fe^{*} o set in X. Hence F is FLACe^{*}-continuous but not FLCe-continuous because $\overline{1} - \mu_2$ is closed in Y, $F^l(\overline{1} - \mu_2) = \lambda_2$ is not $\frac{1}{2}$ -feo set in X.

Example 3.331 Let $X = \{x_1, x_2\}, Y = \{y_1, y_2, y_3\}$ and $F: X^{"}Y$ be a FM defined by $G_F(x_1, y_1) = 0.4, G_F(x_1, y_2) = 0.6$, $G_F(x_1, y_3) = 0.2, \ G_F(x_2, y_1) = 0.2, \ G_F(x_2, y_2) = 0.1, \ and \ G_F(x_2, y_3) = 0.3.$ Let λ be a fuzzy subset of X defined as $\lambda(x_1) = 0.2$ 0.2, $\lambda(x_2) = 0.1$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.3$, $\mu(y_2) = 0.4$, $\mu(y_3) = 0.5$. We assume that $\overline{1} = 1$ and $\tau: L^X \to L$ $n: L^Y \to L$ $\overline{0} = 0$ topologies and Define -fuzzv as follows:

 $\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \lambda = \lambda \\ 0 & \text{otherwise} \end{cases} \quad \eta(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \mu = \mu \\ 0 & \text{otherwise} \end{cases}$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is FUACe^{*}-continuous but not FUAC-continuous because $\overline{1} - \mu$ is $\frac{1}{2}$ -frc in Y and $F^u(\overline{1} - \mu) = (0.6_{x_1}, 0.7_{x_2})$ is not $\frac{1}{2}$ -fuzzy open set in X.

Example 3.432 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X^{"}Y$ be a FM defined by $G_F(x_1, y_1) = 0.2$, $G_F(x_1, y_2) = 1$, $G_F(x_1, y_3) = 0$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = 0$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as $\lambda_1(x_1) = 0.3, \ \lambda_1(x_2) = 0.5; \ \lambda_2(x_1) = 0.2, \ \lambda_2(x_2) = 0.5 \ and \ \mu \ be \ a \ fuzzy \ subset \ of \ Y \ defined \ as \ \mu(y_1) = 0.4, \ \mu(y_2) = 0.1,$ $\mu(y_3) = 0.1$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows:

$$\pi(\lambda) = \begin{cases} 1 & \text{if } \lambda = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \lambda = \lambda_1 \\ 0 & \text{otherwise} \end{cases} \quad \eta(\mu) = \begin{cases} 1 & \text{if } \mu = 0, \text{ or } 1 \\ \frac{1}{2} & \text{if } \mu = \mu \\ 0 & \text{otherwise} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is $FLACe^*$ -continuous but not FLAC-continuous because $\overline{1} - \mu$ is $\frac{1}{2}$ -frc in Y, $F^{l}(\overline{1} - \mu) = \lambda_{2}$ is not $\frac{1}{2}$ -fuzzy open set in X.

Theorem 3.3 33 Let $F: X^{"Y}$ be a FM between two L-fts's (X, τ) and (Y, η) . If $e^*C_{\tau}(F^u(\mu), r) \leq F^u(e^*-ker_n(\mu, r))$ for any $\mu \in L^{Y}$, then F is FLACe^{*}-continuous.

Proof. Suppose that $e^*C_{\tau}(F^u(\mu), r) \leq F^u(e^*-ker_n(\mu, r))$ for any $\mu \in L^{\gamma}$. Let $\nu \in L^{\gamma}$ and ν is r-fe^{*}o by Lemma (3.1), we have,

 $e^* \mathcal{C}_{\tau}(F^u(\nu), r) \leq F^u(e^* - ker_n(\nu, r)) = F^u(\nu).$

This implies that $e^*C_{\tau}(F^u(\nu),r) = F^u(\nu)$ and hence $\overline{1} - F^u(\nu)$ is $r \cdot f \cdot e^*$ o-set. Thus by Theorem (3.1) (iii) F is FLACe*-continuous.

Theorem 3.434 Let $F: X^{"}Y$ be a FM and normalized between two L-fts's (X, τ) and (Y, η) . If $e^*C_{\tau}(F^{l}(\mu), r) \leq r$ $F^{l}(e^{*}-ker_{n}(\mu,r))$ for any $\mu \in L^{Y}$ then F is FUACe^{*}-continuous.

Proof. Suppose that $e^*C_{\tau}(F^l(\mu), r) \leq F^l(e^*-ker_n(\mu, r))$ for any $\mu \in L^Y$. Let $\nu \in L^Y$ and ν is r-f e^* by Lemma (2.1), we have

 $e^* \mathcal{C}_{\tau}(F^l(\nu), r) \le F^l(e^* \cdot ker_n(\nu, r)) = F^l(\nu).$

 $e^*C_{\tau}(F^l(\nu),r) \le F^l(e^*-ker_{\eta}(\nu,r)) = F^l(\nu).$ This implies that $e^*C_{\tau}(F^l(\nu),r) = F^l(\nu)$ and hence $\overline{1} - F^l(\nu)$ is r-f e^* o-set. Thus by Theorem (3.2)(iii), F is FUACe*-continuous.

Theorem 3.535 Let $\{F_i\}_{i\in\Gamma}$ be a family of FLACe^{*}-continuous between two L-fts's (X,τ) and (Y,η) . Then $\bigcup_{i\in\Gamma} F_i$ is FLACe*-continuous.

Proof. Let $\mu \in L^Y$ and μ is r-frc, then $(\bigcup_{i \in \Gamma} F_i)^l(\mu) = \bigvee_{i \in \Gamma} (F_i^l(\mu))$ by Theorem (2.3)(ii). Since $\{F_i\}_{i \in \Gamma}$ is a family of *FLACe*^{*}-continuous between two *L*-fts's (*X*, τ) and (*Y*, η), then $F_i^l(\mu)$ is *r*-fe^{*}o-set for each $i \in \Gamma$. Then for each $\mu \in L^Y$ and μ

is *r*-frc, we have, $(\bigcup_{i \in \Gamma} F_i)^l(\mu) = \bigvee_{i \in \Gamma} (F_i^l(\mu))$ is *r*-fe*o set. Hence $\bigcup_{i \in \Gamma} F_i$ is *FLACe**-continuous. **Theorem 3.636** Let F_1 and F_2 be two normalized FUACe*-continuous between two L-fts's (X, τ) and (Y, η) . Then $F_1 \cup F_2$ is FUACe*-continuous

Proof. Let $\mu \in L^{Y}$ and μ is r-frc, then $(F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)$ by Theorem (2.3)(iii). Since F_1 and F_2 be two normalized *FUACe*^{*}-continuous between two *L*-fts's (X, τ) and (Y, η), then $F_i^u(\mu)$ is r-fe^{*}o-set for each $i \in \{1,2\}$. Then for each $\mu \in L^{Y}$ and μ is r-frc, we have $(F_1 \cup F_2)^u(\mu) = F_1^u(\mu) \wedge F_2^u(\mu)$ is r-fe^{*}o-set. Hence $F_1 \cup F_2$ is FUACe^{*}-continuous.

Theorem 3.737 Let $F: X^{T}Y$ and $H: Y^{T}Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If F is FLe^* -irresolute and H is $FLACe^*$ -continuous, then $H \circ F$ is $FLACe^*$ -continuous.

Proof. Let $v \in L^{Z}$, v is r-frc. Since H is FLACe^{*}-continuous, then from Theorem (3.1), $H^{l}(v)$ is r-fe^{*} o set in Y. Also, F is FLe^* -irresolute implies $F^l(H^l(v))$ is r-fe*o set in X. Hence, we have $(H \circ F)^l(v) = F^l(H^l(v))$ is r-fe*o. Thus $H \circ F$ is *FLACe*^{*}-continuous.

Theorem 3.8 38 Let F: X'Y and H: Y'Z be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If F and H are normalized, F is FUe^{*}-irresolute and H is FUACe^{*}-continuous, then $H \circ F$ is FUACe^{*}-continuous.

Proof. Proof is similar to the above Theorem (3.7)

Theorem 3.939 Let $F: X^{"}Y$ and $H: Y^{"}Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If H is normalized and H is FUACe^{*}-continuous and F is FLe^{*} -irresolute, then $H \circ F$ is $FLACe^{*}$ -continuous.

Proof. Let $v \in L^Z$, v is r-frc. Since H is $FUACe^*$ -continuous, then from Theorem (3.2), $H^u(v)$ is r-f e^* o set in Y. Also, F is FLe^* -irresolute implies $F^l(H^u(v))$ is r-f e^* o set in X. Hence, we have $(H \circ F)^l(v) = F^l(H^u(v))$ is r-f e^* o. Thus $H \circ F$ is $FLACe^*$ -continuous.

We state the following result without proof in view of the above Theorem.

Theorem 3.1040 Let $F: X^{"}Y$ and $H: Y^{"}Z$ be two FM's and let (X, τ) , (Y, η) and (Z, δ) be three L-fts's. If F is normalized, F is FUe^{*}-irresolute and H is FLACe^{*}-continuous, then $H \circ F$ is FUACe^{*}-continuous.

4. Fuzzy upper and lower weakly contra e^* -continuous multifunctions

Definition 4.141 Let $F: X^{"}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $r \in L_0$. Then F is called.

• Fuzzy upper weakly contra e^* -continuous ($FUWCe^*$ -continuous, in short) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and μ is *r*-fuzzy closed, there exists $r - fe^*$ o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \wedge dom(F) \leq F^u(C_\eta(\mu, r))$.

• Fuzzy lower weakly contra e^* -continuous (*FLWCe*^{*}-continuous, in short) at an *L*-fuzzy point $x_t \in dom(F)$ iff $x_t \in F^l(\mu)$ for each $\mu \in L^Y$ and μ is *r*-fuzzy closed, there exists *r*-fe^{*}o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(C_{\eta}(\mu, r))$.

• $FUWCe^*$ -continuous (resp. $FLWCe^*$ -continuous) iff it is $FUWCe^*$ -continuous (resp. $FLWCe^*$ -continuous) at every $x_t \in dom(F)$.

Proposition 4.1 42 F is normalized, then F is FUWCe^{*}-continuous at a fuzzy point $x_t \in dom(F)$ iff $x_t \in F^u(\mu)$ for each $\mu \in L^Y$ and μ is r-fuzzy closed, there exists r-fe^{*}o-set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^u(C_\eta(\mu, r))$.

Theorem 4.143 Let $F: X^{"}Y$ be a FM between two L-fts's (X, τ) , (Y, η) and $\mu \in L^{Y}$. Then F is FLWCe^{*}-continuous if and only if $F^{l}(\mu) \leq e^{*}I_{\tau}(F^{l}(C_{\eta}(\mu, r)), r)$ for any $\mu \in L^{Y}$ and μ is r-fuzzy closed.

Proof. Let F be $FLWCe^*$ -continuous, $\mu \in L^Y$ and μ is r-fuzzy closed. If $x_t \in F^l(\mu)$, there exists r-f e^* o set $\lambda \in L^X$ and $x_t \in \lambda$ such that $\lambda \leq F^l(C_\eta(\mu, r)), r)$ and hence $\lambda \leq e^* I_\tau(F^l(C_\eta(\mu, r)), r)$. Thus $F^l(\mu) \leq e^* I_\tau(F^l(C_\eta(\mu, r)), r)$.

Conversely, let
$$x_t \in dom(F)$$
, $\mu \in L^Y$, μ is r-fuzzy closed and $x_t \in F^l(\mu)$. Then

$$x_t \in F^{\iota}(\mu) \le e^* I_{\eta}(F^{\iota}(\mathcal{C}_{\eta}(\mu, r)), r) = \lambda(say).$$

Thus, $x_t \in \lambda$ and λ is r-f e^* o set such that

$$\lambda = e^* I_{\tau}(F^l(\mathcal{C}_{\eta}(\mu, r)), r) \le F^l(\mathcal{C}_{\eta}(\mu, r)).$$

Hence, F is $FLWCe^*$ -continuous.

Theorem 4.244 Let $F: X^{\cdot Y}$ be a FM and normalized between two L-fts's (X, τ) , (Y, η) and $\mu \in L^{Y}$. Then F is FUWCe^{*}-continuous if and only if $F^{u}(\mu) \leq e^{*}I_{\tau}(F^{u}(C_{\eta}(\mu, r)), r)$ for any $\mu \in L^{Y}$ and μ is r-fuzzy closed.

Proof. This can be proved in a similar way as the above Theorem (4.1)

Remark 4.145 The following implications hold.

• FUWC-continuous \Rightarrow FUWCe-continuous \Rightarrow FUACe^{*}-continuous.

• *FLWC*-continuous \Rightarrow *FLWCe*-continuous \Rightarrow *FLACe*^{*}-continuous.

The Converse of the above Remark (4.1) need not be true as shown by the following examples.

Example 4.146 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X^{"}Y$ be a FM defined by $G_F(x_1, y_1) = 0.1$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.6$, $G_F(x_2, y_2) = \overline{1}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subset of X defined as $\lambda_1(x_1) = 0.2$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.6$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \lambda_2 \\ 0 & \text{otherwise} \end{cases} \quad \eta(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \mu = \mu \\ 0 & \text{otherwise} \end{cases}$$

are fuzzy topologies on X and Y. For $r=\frac{1}{2}$, then F is FUWCe-continuous but not FUWC-continuous because $\overline{1} - \mu$ is $\frac{1}{2}$ -fuzzy closed in Y and $F^u(\overline{1} - \mu) = \lambda_2$ is not $\frac{1}{2}$ -fuzzy open set in X.

Example 4.247 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X^{"}Y$ be a FM defined by $G_F(x_1, y_1) = 0.1$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.6$, $G_F(x_2, y_2) = \overline{1}$, and $G_F(x_2, y_3) = 0.3$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as $\lambda_1(x_1) = 0.2$, $\lambda_1(x_2) = 0.3$; $\lambda_2(x_1) = 0.9$, $\lambda_2(x_2) = 0.9$ and μ be a fuzzy subset of Y defined as $\mu(y_1) = 0.4$, $\mu(y_2) = 0.1$, $\mu(y_3) = 0.2$. We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \lambda = \lambda_1, \lambda_2 \\ 0 & \text{otherwise} \end{cases} \quad \eta(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \text{ or} \\ \frac{1}{2} & \text{if } \mu = \mu \\ 0 & \text{otherwise} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is *FLWCe*-continuous but not *FLWC*-continuous because $\overline{1} - \mu$ is $\frac{1}{2}$ -fuzzy closed in Y, $F^{l}(\overline{1} - \mu) = \lambda_{2}$ is not $\frac{1}{2}$ -fuzzy open set in X.

Example 4.348 Let $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ and $F: X^{T}Y$ be a FM defined by $G_F(x_1, y_1) = 0.1$, $G_F(x_1, y_2) = \overline{1}$, $G_F(x_1, y_3) = \overline{0}$, $G_F(x_2, y_1) = 0.5$, $G_F(x_2, y_2) = \overline{0}$, and $G_F(x_2, y_3) = \overline{1}$. Let λ_1 and λ_2 be a fuzzy subsets of X be defined as $\lambda_1(x_1) = 0.3$, $\lambda_1(x_2) = 0.5$; $\lambda_2(x_1) = 0.4$, $\lambda_2(x_2) = 0.4$ and μ_1 and μ_2 be a fuzzy subsets of Y defined as $\mu_1(y_1) = 0.5$, $\mu_1(y_2) = 0.5$, $\mu_1(y_3) = 0.5$ and $\mu_2(y_1) = 0.4$, $\mu_2(y_2) = 0.4$, $\mu_2(y_3) = 0.4$ We assume that $\overline{1} = 1$ and $\overline{0} = 0$. Define L-fuzzy topologies $\tau: L^X \to L$ and $\eta: L^Y \to L$ as follows:

$$\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \lambda = \lambda_1 \\ 0 & \text{otherwise} \end{cases} \quad \eta(\mu) = \begin{cases} 1 & \text{if } \mu = \bar{0}, \text{ or } \bar{1} \\ \frac{1}{2} & \text{if } \mu = \mu_1, \mu_2 \\ 0 & \text{otherwise} \end{cases}$$

are fuzzy topologies on X and Y. For $r = \frac{1}{2}$, then F is

- (i) *FUACe*^{*}-continuous but not *FUWCe*-continuous because μ_2 is $\frac{1}{2}$ -fuzzy closed in Y and $F^u(\mu_2) = \lambda_2$ is not $\frac{1}{2}$ -feo set in X.
- (ii) *FLACe*^{*}-continuous but not *FLWCe*-continuous because μ_2 is $\frac{1}{2}$ -fuzzy closed in Y and $F^u(\mu_2) = \lambda_2$ is not $\frac{1}{2}$ -feo set in X.

References

- S. E. Abbas, M. A. Hebeshi and I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, The Journal of Fuzzy Mathematics, 22 (4) (2014), 951--962.
- [2] K. M. A. Al-hamadi and S. B. Nimse, On fuzzy α-continuous multifunctions, Miskolc Mathematical Notes, 11 (2) (2010), 105-112.
- [3] M. Alimohammady, E.Ekici, S.Jafari and M. Roohi, On fuzzy upper and lower contra continuous multifunctions, Iranian Journal of Fuzzy Systems, 8 (3) (2011), 149-158.
- [4] C. Berge, *Topological spaces including a treatment of multi-valued functions*, Vector Spaces and Convexity, Oliver, Boyd London, (1963).
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182--189.
- [6] K. C. Chattopadhyay and S. K. Samanta, *Fuzzy topology : fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy sets and systems,* **54** (2) (1993), 207--212.
- [7] P. Dhanasekaran, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower $e^*(\delta s \text{ and } \delta p)$ -irresolute multifunctions, (submitted).
- [8] P. Dhanasekaran, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower almost contra e-continuous multifunctions, (submitted).
- [9] J. A. Goguen, *The fuzzy Tychonoff Theorem*, J. Math. Anal. Appl., **43**(3) (1973), 734--742.
- [10] U. Höhle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659--673.
- [11] U. Höhle and A. P. Šostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, 73 (1995), 131--149.
- [12] U. Höhle and A. P. Šostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3, Kluwer Academic Publishers, (1999), 123--272.
- [13] M. A. Hebeshi and I. M. Taha, Weaker forms of contra-continuous fuzzy multifunctions, The Journal of Fuzzy Mathematics, 23 (2) (2015), 341--354.
- [14] Y. C. Kim and J. W. Park, r-fuzzy δ -closure and r-fuzzy θ -closure sets, J. Korea Fuzzy Logic and Intelligent systems, **10**(6) (2000), 557-563.
- [15] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Weaker forms of continuity in Šostak's fuzzy topology, Indian J. Pure and Appl. Math., 34 (2) (2003), 311--333.
- [16] Y. C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems., 133 (2003), 277-297.
- [17] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).
- [18] T. Kubiak and A.P. Šostak, Lower set valued fuzzy topologies, Questions Math., 20 (3) (1997), 423-429.
- [19] Y. Liu and M. Luo, Fuzzy topology, World Scientific Publishing Singapore., (1997), 229-236.
- [20] R. A. Mahmoud, An application of continuous fuzzy multifunctions, Chaos, Solitons and Fractals, 17 (2003), 833-841.
- [21] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41 (1991), 113--125.
- [22] N. S. Papageorgiou, Fuzzy topolgy and fuzzy multifunctions, J. Math. Anal. Appl., 109 (1985), 397-425.
- [23] A. Prabhu, A. Vadivel and B. Vijayalakshmi, On fuzzy upper and lower e-continuous multifunctions, (submitted).
- [24] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser II 11 (1985), 89--103.
- [25] A. P. Šostak, Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44 (6) (1989), 125--186.
- [26] A. P. Šostak, *Basic structures of fuzzy topology*, J. Math. Sciences **78** (6) (1996), 662--701.
- [27] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Šostak's fuzzy topological spaces, (Submitted).
- [28] M. Sujatha, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower contra e-continuous multifunctions, (submitted).
- [29] E. Tsiporkova, B. De Baets and E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued mappings, Fuzzy sets and systems, **85** (1997), 93--108.
- [30] E. Tsiporkova, B. De Baets and E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy sets and systems, 94 (1998), 335--348.
- [31] A. Vadivel and B. Vijayalakshmi, *Fuzzy Almost e-continuous mappings and fuzzy e-connectedness in smooth topological spaces*, accepted in The Journal of Fuzzy Mathematics.
- [32] C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl, 45 (1974), 512-521.