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Introduction

Kubiak [17] and Sostak [24] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces
(originally called (L-) fuzzy topological spaces by Chang [5] and Goguen [9]. It is the grade of openness of an L-fuzzy set. A general
approach to the study of topological type structures on fuzzy powersets was developed in [[10]-[12], [17], [18], [24]-[26]].

Berge [4] introduced the concept multimapping F: XY where X and Y are topological spaces. After Chang introduced the
concept of fuzzy topology [5], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many
authors from different view points (eg. see [2], [3], [20]-[22]). Tsiporkova et al., [30] introduced the continuity of fuzzy multivalued
mappings in the Chang's fuzzy topology [5]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower
semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana et al. [27] introduced the concept of r-fuzzy
e-open sets and r-fuzzy e-continuity in Sostak's fuzzy topological spaces. Vadivel et. al., [31] introduced the concept of fuzzy
almost e-continuity, fuzzy e-compactness in a fuzzy topological space in the sense of Sostak [24]. Dhanasekaran et.al [8]
introduced the concept of fuzzy upper and fuzzy lower almost contra e-continuous multifunction on fuzzy topological spaces in
Sostak sense.

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower almost contra e*-continuous multifunctions, fuzzy
upper and fuzzy lower weakly contra e*-continuous multifunction on fuzzy topological spaces in Sostak sense. Several
characterizations and properties of these multifunctions are presented and their mutual relationships are established in L-fuzzy
topological spaces. Later, composition and union between these multifunctions have been studied.

Throughout this paper, nonempty sets will be denoted by X,Y etc., L = [0,1] and L, = (0,1]. The family of all fuzzy sets in
X is denoted by L*X. The complement of an L-fuzzy set 2 is denoted by A¢. This symbol ~ for a multifunction.

For a € L, a(x) = a for all x € X. A fuzzy point x, for t € L, is an element of L* such that x,(y) = (ty=x 0ify x. The
family of all fuzzy points in X is denoted by Pt(X). A fuzzy point x; € A iff t < A(x).

All other notations are standard notations of L-fuzzy set theory.

2.Preliminaries
Definition 2.1 1 [1] Let F: XY, then F is called a fuzzy multifunction (FM, for short) if and only if F(x) € LY for each x €
X. The degree of membership of y in F(x) is denoted by F(x)(y) = Gg(x,y) for any (x,y) € X X Y. The domain of F,
denoted by domain(F) and the range of F, denoted by rng(F), forany x € X and y € Y, are defined by :
dom(F)(x) = V, Gr(x,y)andrng (F)(y) = v, Gr(x.y).
Definition 2.2 2 [1] Let F: XY be a FM. Then F is called:
« Normalized iff for each x € X, there exixts y, € Y such that G (x,y,) = 1.
« A crisp iff Gp(x,y) =1 foreach x € X and y € Y.
Definition 2.3 3 [1] Let F: XY be a FM. Then
* The image of A € LX isan L-fuzzy set F(1) € L' defined by
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FOYO) =V, [6:(xy) AL,

* The lower inverse of u € LY isan L-fuzzy set F'(u) € LX defined by
Flu 0 = v, [Gr(x,y) A p()].

* The upper inverse of u € LY isan L-fuzzy set F*(u) € L* defined by
FH () (x) =4 [GECxy) V()]

Theorem 2.14 [1] Let F: XY be a FM. Then

* F(A)) S F(4,) if 4, <A,

* F'(y) < F'(up) and F*(uy) < F (1) if 1y < pty.

< Flu®) = (F*(w)".

« FYue) = (F'(w)°".

o F(F*(u)) < p if F isacrisp.

*« F¥(F(A)) = A if F isacrisp.

Definition 2.45 [1] Let F: XY and H:Y"Z be two FM. Then the composition H o F is defined by
((H e F))(@) =V, [6r(6¥) A Gu (7, 2)].
Theorem 2.26 [1] Let F: XY and H:Y"Z be FM. Then we have the following

e (HoF) =F(H).

e (Ho F)* = F*(HY).

« (Ho F)t = Fi(HY.

Theorem 2.37 [1] Let F;: XY be a FM. Then we have the following

* WUier YA =V F(2).

* (Uier F)'(w) =V F ().

* (Uier F)" (W) =A F{ ().

Definition 2.58 [12,17,19,24] An L-fuzzy topological space (L-fts, in short) is a pair (X, 1), where X is a nonempty set and
T: L*¥ — L is a mapping satisfying the following properties.

+7(0) = 7(1) =1,

* (g A i) 2 T(y) AT(up), forany py, p, € 1%

* T(Vier ) 2Nier T(1y), forany {p;}ier < 1%,

Then t is called an L-fuzzy topology on X. For every A € L%, t(A) is called the degree of openness of the L-fuzzy set A.
A mapping f: (X,7) —» (Y,n) is said to be continuous with respect to L-fuzzy topologies = and 7 iff ©(f~1(u)) = n(w) for
each u € LY.
Theorem 2.4 9 [6,15,16,19] Let (X,7) be a an L-fts. Then for each A € L*,r € L,, we define L-fuzzy operators
C.andl:L¥ x L, — L* as follows:
C;AT) =A {peLX:A<ut(1—p) =1l
LAr)=v {uelX:A=>ut(n) =1}
For A, u € L* and r,s € L,, the operator C, satisfies the following conditions:

« C,(0,7) =0,

s AL C (A1),

* CAT) V) =C(AVuT),

* GG (A1), ) = C(4,7),

e C,(Ar)=A0ff T(A) =1

e C.(A5,r) = (I (A4, 7)) and I,(A5, 1) = (C,(A, 1))~

Definition 2.610 [1] Let F: XY be a FM between two L-fts's (X,7),(Y,n) and r € L,. Then F is called:

* Fuzzy upper semi (or Fuzzy upper) (in short, FUS (or FU))-continuous ata L-fuzzy point x, € dom(F) iff x, € F*(u)
for each u € LY and n(u) = r, there exists A € L*, (1) = r and x, € A such that A A dom(F) < F*(u). F is FU-continuous
iff it is FU-continuous at every x;, € dom(F).

» Fuzzy lower semi (or Fuzzy lower) (in short, FLS (or FL))-continuous at a L-fuzzy point x, € dom(F) iff x, € F'(u)
for each p € LY and n(u) = r, there exists 1 € LX, t(1) > r and x, € A such that A < Ft(u). F is FL-continuous iff it is
FL-continuous at every x; € dom(F).

* Fuzzy continuous if it is FU-continuous and FL-continuous.

Theorem 2,511 [1] Let F: XY be a fuzzy multifunction between two L-fts's (X, 1) and (Y,n). Let u € LY. Then we have
the following

« F is FL-continuous iff 7(F'(1)) = n(w).

«If F isnormalized, then F is FU-continuous iff T(F*(w)) = n(u).

« F is FL-continuous iff (1 — F*(u)) = n(1 — p).

«If F is normalized, then F is FU-continuous iff (1 — F'(1)) = n(1 — p).
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Definition 2.7 12 [13] Let F: XY be a FM between two L-fts's (X, ), (Y,n) and r € L,. Then F is called:
* Fuzzy upper almost contra continuous (FUAC-continuous, for short) at any L-fuzzy point x, € dom(F) iff x, € F*(u)
foreach pu € LY and p is r-frc there exist A € L*, (1) = and x, € A such that A A dom(F) < F* ().
» Fuzzy lower almost contra continuous (FLAC-continuous, for short) at any L-fuzzy point x, € dom(F) iff x, € F'(u)
for each u € LY and u is r-frc there exist 1 € L%, 7(1) > r and x, € 1 such that 2 < F'(p).
» FUAC-continuous (resp. FLAC-continuous) iff it is FUAC-continuous (resp. FLAC-continuous) at every x;, € dom(F).
Definition 2.8 13 [13] Let F: X"Y be a FM between two L-fts's (X, t), (Y,n) and r € L,. Then F is called.
* Fuzzy upper weakly contra continuous (FUW C-continuous, in short) at an L-fuzzy point x, € dom(F) iff x, € F*(u)
foreach u € L” and u is r-fuzzy closed, there exist A € L*, 7(1) = r and x; € A such that A A dom(F) < F*(C,(u,1)).
» Fuzzy lower weakly contra continuous (FLW C-continuous, in short) atan L-fuzzy point x, € dom(F) iff x, € F'(u) for
each p € LY and u is r-fuzzy closed, there exist A € L*, 7(1) = r and x, € A such that 2 < F!(C,(u,1)).
» FUWC -continuous (resp. FLWC -continuous) iff it is FUWC -continuous (resp. FLWC -continuous) at every x, €
dom(F).
Definition 2.9 14 [14] Let (X,7) be a fts. For A,u € I* and r € I,, A is called r-fuzzy regular open (for short, r-fro)
(resp. r-fuzzy regular closed (for short, r-frc)) if A = I,(C,(4,1),r) (resp. A = C,(I;(4,71),1)).
Definition 2.10 15 [14] Let (X,7) be a fts. Then for each u € I*,x, € P.(X) and r € I,,
* u is called r-open Q.-neighbourhood of x; if x.qu with t(u) > r.
« u is called r-open R -neighbourhood of x; if x,qu with u = [.(C.(u,7), 7).

We denoted
Q. (xe, 7) = {u € I*: xpqu, T(w) =1},

Ri(x,, ) ={ne€ I*: xXequ, pb = I (C(u, 1), 1)}

Definition 2.11 16 [14] Let (X, ) be a fts. Then for each A € I*,x, € P,(X) and r € I,
* x, is called r-t cluster point of A if for every u € Q.(x;, ), we have uqA.
* x, iscalled r-§ cluster point of A if for every u € R, (x;,7), we have uqA.
+ An &-closure operator is a mapping D,:I* x I — IX defined as follows: §C,(A,7) or D,(A,7) =V {x, € P.(X): x, is
r-8-cluster point of A1}.
Equivalently, §C,(4,7) =A {u € I*:u > A, pisar — frcset} and 81,(4,7) =V {u € I*: u < A, pisar — froset}.
Definition 2.12 17 [14] Let (X, 1) be a fuzzy topological space. For A € IX and r € I,, A iscalled r-fuzzy S-closediff 1 =
8C,(A,7r) or D;(A4,1).
Definition 2.1318 [27] Let (X,7) be aan L-fts. Then for each A, u € L*,r € Ly. Then A is called
1 is called an r-fuzzy e-open (briefly, r-feo) setif 1 < C,(8;(4,7),r) vV I.(6C.(1,1),7).
1 is called an r-fuzzy e-closed (briefly, r-feo) setif C.(61,(A4,1),r) AL (6C.(A4, 1), 1) < A
Definition 2.1419 [27] Let (X,t) be an L-fts. Then for each A, u € L*,r € L,. Then 4 is called
cel,(4,r)=v {u€el*:u<Aiuisarfeoset } iscalled the r-fuzzy e-interior of A.
ceC,(A,r) =N {uel*:u=2uisar-fecset } iscalled the r-fuzzy e-closure of A.
Definition 2.15 20 [23,28] Let F: XY be a FM between two L-fts's (X, 7),(Y,n) and r € L,. Then F is called:
* Fuzzy upper contra e (FUCe, in short) (resp. FUe)-continuous any L-fuzzy point x, € dom(F) iff x, € F*(u) for each
u€ LY and n(u) = r (resp. n(u) = r) there exist r-fuzzy e-open set (r-feo set, in short), A € L* and x, € A such that 1 A
dom(F) < F*(w).
» Fuzzy lower contra e (FLCe, in short) (resp. FLe)-continuous any L-fuzzy point x, € dom(F) iff x, € F'(u) for each
w €L and n(u®) =r (resp. n(u) = r) there exist r-fuzzy e-open set (r-feo set, in short), 1 € L* and x, € A such that 2 <
F'(w).
* FUCe (resp. FLCe, FUe and FLe)-continuous iff it is FUCe (resp. FLCe, FUe and FLe)-continuous at every x, € dom(F).
Definition 2.16 21 [7] Let F: XY be a FM between two L-fts's (X, ), (Y,n) and r € L,. Then F is called:
* Fuzzy upper e* (in short, FUe*)-irresolute at any L-fuzzy point x, € dom(F) iff x, € F*(u) for each u € LV and
r-fe*o set, there exists r-fe*o set 1 € L¥ and x, € A such that 1 A dom(F) < F*(u).
* Fuzzy lower e* (in short, FLe*)-irresolute at any L-fuzzy point x, € dom(F) iff x, € F'(u) for each u € L' and
r-fe*o set, there exists r-fe*o set 1 € L* and x, € 1 such that 1 < F'(u).
» FUe™-irresolute and FLe"-irresolute iff it is FUe"-irresolute and FLe*-irresolute at every x, € dom(F).
Definition 2.17 22 [28] Let (X,t) be an L-fts. Then for each A € L* and r € L, we define L-fuzzy operator e-ker,: L* x
Ly — L* as follows:
e-ker,(A,7) =A {u € L*: 2 < u, uis r-feo-set}.
Lemma 2.123 [28] For A inan L-fts (X, 1), if 4 is r-feo-set then A = e-ker;(4,1).

3.Fuzzy upper and lower almost contra e*-continuous multifunctions
Definition 3.124 Let F: XY be a FM between two L-fts's (X, 7),(Y,n) and r € L. Then F is called:
* Fuzzy upper almost contra e*-continuous (FUACe*-continuous, in short) at any L-fuzzy point x; € dom(F) iff x, €
F*(u) foreach p € LY and u is r-frc, there exist r-fe*o set 1 € LX and x, € A such that A A dom(F) < F*(u).
* Fuzzy lower almost contra e*-continuous (FLACe*-continuous, in short) at any L-fuzzy point x, € dom(F) iff x, €
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F'(w) foreach u € LY and u is r-frc, there exist r-fe*o set 1 € L* and x, € A such that 1 < F'(u).
* Fuzzy upper almost contra e*-continuous (resp. Fuzzy lower almost contra e*-continuous) iff it is FUACe*-continuous
(resp. FLACe™-continuous) at every x;, € dom(F).
Proposition 3.1 25 F is normalized implies F is FUACe*-continuous at an L-fuzzy point x, € dom(F) iff x, € F*(w)
foreach u € LY and p is r-frc there exists r-fe*o set 1 € L¥ and x, € 1 such that 2 < F¥(u).

Theorem 3.126 Let F: XY be a FM between two L-fts's (X,7), (Y,n) and u € LY, then the following are equivalent:

« F is FLACe*-continuous.

 F'(u) is r-fe*o set, for any u is r-frc.

« 1— F¥() is r-fe*o set, for any u is r-fro.

« 1— F¥(I,(C,(u,7), 7)) is r-fe*o-set, for any n(u) >r.

* FY(Cy(L,(u,7),7)) is r-fe*o-set, forany n(1 —p) > r.

Proof. (i) = (ii): Let x, € dom(F),u € LY, u is r-frc and x, € F'(u), then there exist r-fe*o-set 1 € LX and x, € 1
such that 2 < F'(u) and hence x, € e*I,(F'(u), 7). Therefore, we obtain F'(u) < e*I,(F'(w), 7). Thus F'(u) is r-fe*o set.

(i) = (i): Let x, € dom(F),u € LY, u is r-frc and x, € F'(u) we have by (ii), F'(u) is r-fe*o-set. Let F'(u) = A(say),
then there exists r-fe*o-set 1 € L* and x, € A such that A < F'(u). Thus F is FLACe*-continuous.

(i) = (iii): Let u € LY and u is r-fro, hence by (ii), F'(1 — ) = 1 — F*(u) is r-fe*o set.

(iii) = (ii): It is similar to that of (ii) = (iii).

(iii) = (iv): Let u € L" and n(u) = r. Since I,,(C,(u,7),7) is r-fro, then 1- F*(L,(C,(u, 1), 7)) is r-fe*o set.

(iv) = (iii): Obvious.

(iv) = (v): Let p € L' and n(1 — ) = r hence by (iv), 1 — F*(I,(C,(1 — u,7),7)) = FY(C,(I,(1,7),7)) is r-feo set.

(v) = (ii): Obvious.

We state the following result without proof in view of the above theorem.

Theorem 3.2 27 Let F: XY be a FM and normalized between two L-fts's (X,1), (Y,n) and u € LY, then the following are
equivalent:

» F is FUACe"-continuous.

* F¥(u) is r-fe*o-set for any p is r-frc.

« 1—F'(u) is r-fe*o-set for any u is r-fro.

« 1— F'(I,(C,(w,7),7)) is r-fe*o set for any n(w) > r.

o FY(Cy(I(1,7),7)) is r-fe*o setforany n(1 —p) >r.
Proof. This can be proved in a similar way as Theorem (3.1)

Remark 3.128 The following implications hold.

» FUCe-continuous = FUACe"-continuous < FUAC-continuous.
» FLCe-continuous = FLACe*-continuous < FLAC-continuous.

In general the converses are not true.

Example 3.129 Let X = {x;,x,}, Y = {31, ¥,,¥5} and F:X'Y be a FM defined by Gr(x;,y,) = 0.8, Gr(x1,y,) =1,
Gr(x1,¥3) = 0.7, Gr(x5,y1) = 0.5, Ge(x3,¥,) = 1, and Gr(x,,y5) = 0.6. Let 1, and 1, be a fuzzy subsets of X be defined as
() =04, A;(x;) =03; A,(x;) =03, A,(x,) =04, u; and u, be a fuzzy subsets of Y defined as u,(y,) =0.5,
w(y,) = 0.5, puy(y3) = 0.5 and p,(v;) = 0.5, uy(v,) = 0.6, u,(y3) = 0.7. We assume that 1 = 1 and 0 = 0. Define L-fuzzy

1 if A=0, or 1 1 ify:f), orl
topologies 7: L¥ — L and n: L' — L asfollows: 7(A) =<3 if A=4 n(w)=<3 f u=w,u
0 otherwise 0 otherwise

are fuzzy topologies on X and Y. For r = % 11—y is % frc setin Y and F*(1 — ) = py is %—fe*o setin X. Hence F is
FUACe*-continuous but not FUCe-continuous. As 1 — u, isclosed in (Y,7), F*(1 — u,)=21, is not %—feo setin (X, 1).
Example 3.230 Let X = {x;,x,}, Y ={y,,¥,,¥3} and F: XY be a FM defined by Gr(xy,y1) = 0.8, Gp(x1,y,) =1,

Gr(x1,y3) = 0.3, Gp(x, 1) = 0.5, Gr(x,,¥,) = 1, and Gp(x,,y5) = 0.6. Let A; and 1, be a fuzzy subset of X be defined as
A1(x1) =04, A;(x;) =0.1; A,(x;) =03, A,(x,) =0.3, y; and p, be a fuzzy subsets of Y defined as u,(y;) =0.5,

w1 (¥2) = 0.5, py(v3) = 0.5 and p,(y;) = 0.7, i (¥,) = 0.7, py(y3) = 0.7. We assume that 1 = 1 and 0 = 0. Define L-fuzzy

1 if A=0, orl 1 if,u:(3, or 1
topologies 7: L¥ » L and n: LY — L as follows: 7(1) =43 if A=4 n(w)=<3 It u=m,u
0 otherwise 0 otherwise

are fuzzy topologieson X and Y. For r = i as 1—p, is %—frc setin Y and F'(1 — ;) = py is %—fe*o setin X. Hence F
is FLACe*-continuous but not FLCe-continuous because 1 — u, isclosed in Y, F!(1 — u,) = A, is not %—feo setin X.
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Example 3.331 Let X = {x;,x,}, Y = {y1,¥,,¥3} and F: XY be a FM defined by Gg(x1,y,) = 0.4, Gp(xy,y;) = 0.6,
Gr(x1,y3) = 0.2, Gr(x3,¥1) = 0.2, Gp(x3,y,) = 0.1, and Gg(x,,y3) = 0.3. Let A be a fuzzy subset of X defined as A(x;) =
0.2, A(x,) = 0.1 and u be a fuzzy subset of Y defined as u(y;) = 0.3, u(y,) = 0.4, u(y;) = 0.5. We assume that 1 = 1 and

0=0 . Define L -fuzzy topologies XL and nLY > L as follows:
1 if A=0, or 1 1 ify:f), orl

t(A)=43 if A=41 nw)=yz it u=u
0 otherwise 0 otherwise

are fuzzy topologieson X and Y. For rzé, then F is FUACe*-continuous but not FUAC-continuous because 1 — u is %—frc
inY and F*(1—p) = (0.64,,0.7,,) isnot é—fuzzy open set in X.
Example 3.432 Let X = {xy,x,}, Y ={y1,¥,,¥3} and F: XY be a FM defined by Gr(xy,¥1) = 0.2, Gp(x1,y,) =1,

Gr(x1,¥3) =0, Gp(x3,y1) = 0.5, Gp(x,,¥,) =0, and Gg(x,,y3) = 0.3. Let A; and A, be a fuzzy subsets of X be defined as
A1(x1) = 0.3, A,(x) = 0.5; A,(x1) = 0.2, A,(x,) = 0.5 and u be a fuzzy subset of Y defined as u(y,) = 0.4, u(y,) = 0.1,

u(y;) =0.1. We assume that 1=1 and 0=0. Define L -fuzzy topologies 7:L¥ - L and n:L' » L as follows:

1 if/izf), ori 1 if,u:(a, ori
t(A)=13 if A=4 n(u) =43 it u=p
0 otherwise 0 otherwise

are fuzzy topologies on X and Y. For r = % then F is FLACe*-continuous but not FLAC-continuous because 1 — u is
%—frc inY, F{(1 — p) = 4, isnot %—fuzzy open set in X.
Theorem 3.3 33 Let F: XY beaFM betweentwo L-fts's (X,7) and (Y,n). If e*C.(F“(w), ) < F"(e*-ker,(u,1)) forany
u €LY, then F is FLACe*-continuous.
Proof. Suppose that e*C,(F"(u),r) < F*(e*-ker,(u, 1)) for any u € L”. Let v € L” and v is r-fe*o by Lemma (3.1),
we have,
e C(F*(v),r) < F“(e*-ker,(v,1)) = F*(v).
This implies that e*C,(F*(v),r) = F¥(v) and hence 1 —F%(v) is r-fe*o-set. Thus by Theorem (3.1) (iii) F is
FLACe*-continuous.
Theorem 3.434 Let F:XY be a FM and normalized between two L-fts's (X,7) and (Y,n). If e*C.(F'(n),7) <
F'(e*-ker,(u,)) forany u € L' then F is FUACe*-continuous.
Proof. Suppose that e*C,(F!(u),r) < F'(e*-ker,(u,7)) forany p € L'. Let v € L” and v is r-fe*o by Lemma (2.1), we
have
e*C,(F'(v),r) < Fl(e*-kery (v,1)) = F'(v).
This implies that e*C,(F'(v),r) = F'(v) and hence 1— F!(v) is r-fe*o-set. Thus by Theorem (3.2)(iii), F is
FUACe™-continuous.
Theorem 3.535 Let {F;};cr be a family of FLACe*-continuous between two L-fts's (X,7) and (Y,n). ThenU;cr F; is
FLACe*-continuous.
Proof. Let u € LY and u is r-frc, then (U;er Fi)' (1) =i¥F (F}(w)) by Theorem (2.3)(ii). Since {F;};er is a family of

FLACe*-continuous between two L-fts's (X,7) and (Y,n), then F}(u) is r-fe*o-set for each i € . Then for each u € LY and u
is -frc, we have, (Ujer F))'(w) =V (Fl(w)) is r-fe*o set. Hence U;er F; is FLACe*-continuous.
Theorem 3.636 Let F, and F, be two normalized FUACe*-continuous between two L-fts's (X,t) and (Y,7n). Then F; UF,
is FUAC e*-continuous
Proof. Let u € LY and p is r-frc, then (F; U F,)“(u) = F¥*(u) A F¥*(u) by Theorem (2.3)(iii). Since F; and F, be two
normalized FUACe*-continuous between two L-fts's (X,7) and (Y,n), then F*(w) is r-fe*o-set for each i € {1,2}. Then for
each u € LY and u is r-frc, we have (F; U F,)%(u) = Fi(u) A F¥(u) is r-fe*o-set. Hence F, U F, is FUACe*-continuous.
Theorem 3.737 Let F:X'Y and H:Y'Z be two FM's and let (X,7), (Y,n) and (Z,8) be three L-fts's. If F is
FLe™-irresolute and H is FLACe*-continuous, then H o F is FLACe™-continuous.
Proof. Let v € L%, v is r-frc. Since H is FLACe*-continuous, then from Theorem (3.1), H'(v) is r-fe*o set in Y.
Also, F is FLe*-irresolute implies F'(H'(v)) is r-fe*o set in X. Hence, we have (H o F)!(v) = FY{(H'(v)) is r-fe*o. Thus
H o F is FLACe*-continuous.
Theorem 3.8 38 Let F: XY and H:Y"Z be two FM's and let (X,t), (Y,n) and (Z,8) be three L-fts's. If F and H are
normalized, F is FUe*-irresolute and H is FUACe*-continuous, then H o F is FUACe™-continuous.
Proof. Proof is similar to the above Theorem (3.7)
Theorem 3.939 Let F: XY and H:Y"Z be two FM's and let (X, 1), (Y,n) and (Z,8) be three L-fts's. If H is normalized
and H is FUACe*-continuous and F is FLe"-irresolute, then H o F is FLACe*-continuous.
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Proof. Let v € L%, v is r-frc. Since H is FUACe*-continuous, then from Theorem (3.2), H*(v) is r-fe*o set in Y.
Also, F is FLe*-irresolute implies F'(H*(v)) is r-fe*o set in X. Hence, we have (H o F)!(v) = F'(H*(v)) is r-fe*o. Thus
H o F is FLACe™-continuous.
We state the following result without proof in view of the above Theorem.
Theorem 3.1040 Let F: XY and H:Y"Z betwo FM'sand let (X,1), (Y,n) and (Z,&) bethree L-fts's. If F is normalized,
F is FUe"-irresolute and H is FLACe™-continuous, then H o F is FUACe"-continuous.

4.Fuzzy upper and lower weakly contra e*-continuous multifunctions

Definition 4.141 Let F: XY be a FM between two L-fts's (X,7), (Y,n) and r € L,. Then F is called.

* Fuzzy upper weakly contra e*-continuous (FUW Ce*-continuous, in short) at an L-fuzzy point x, € dom(F) iff x, €
F%(u) for each p €LY and u is r-fuzzy closed, there exists r-fe*o-set A € L*¥ and x, € A such that A A dom(F) <
F*(Cy (7).

* Fuzzy lower weakly contra e*-continuous (FLW Ce*-continuous, in short) at an L-fuzzy point x, € dom(F) iff x, €
F'(u) foreach u € LY and u is r-fuzzy closed, there exists r-fe*o-set 1 € LX and x, € A such that 1 < Fl(Cn(u, 7).

« FUWCe™-continuous (resp. FLW Ce*-continuous) iff it is FUWCe*-continuous (resp. FLWCe*-continuous) at every
x; € dom(F).

Proposition 4.1 42 F isnormalized, then F is FUWCe*-continuous at a fuzzy point x, € dom(F) iff x, € F*(u) for each
u €LY and p is r-fuzzy closed, there exists r-fe*o-set 1 € L* and x, € A such that 2 < F*(C,(u,1)).

Theorem 4.143 Let F: XY be a FM between two L-fts's (X,7), (Y,n) and u € L'. Then F is FLWCe*-continuous if
and only if F'(u) < e*I(F'(C,(u,7)),7) forany p € L and p is r-fuzzy closed.

Proof. Let F be FLWCe*-continuous, u € LY and u is r-fuzzy closed. If x, € F'(u), there exixts r-fe*o set 1 € LX
and x, € A such that 2 < F!(C,(u,7)),7) and hence A < e*I.(F'(C,(u, 7)), 7). Thus F'(u) < e*I.(FY(C, (1, 7)), 7).
Conversely, let x, € dom(F), u € LY, p is r-fuzzy closed and x, € F'(u). Then
x; € Fl(u) < e*L,(F'(C,(1, 7)), 1) = A(say).
Thus, x; € 1 and A is r-fe*o set such that
A= e L(F (Cy(r 7)), 7) < FL(Cy(, 7))

Hence, F is FLWCe*-continuous.

Theorem 4.244 Let F:X'Y be a FM and normalized between two L-fts's (X,7), (Y,n) and p€L'. Then F is
FUW Ce"-continuous if and only if F*(u) < e*I,(F“(C,(u,1)),7) forany u € LY and u is r-fuzzy closed.

Proof. This can be proved in a similar way as the above Theorem (4.1)
Remark 4.145 The following implications hold.
» FUWC-continuous = FUWCe-continuous = FUACe*-continuous.
* FLWC-continuous = FLW Ce-continuous = FLACe*-continuous.
The Converse of the above Remark (4.1) need not be true as shown by the following examples.

Example 4.146 Let X = {x;,%,}, ¥ = {y1,y,,¥3} and F: XY be a FM defined by Gp(x;,y;) = 0.1, Gp(x;,v,) = 1,
Gr(x1,y3) =0, Gr(x3, 1) = 0.6, Gr(x2,¥,) = 1, and Gz(x,,y5) = 0.3. Let 1; and A, be a fuzzy subsets of X defined as
A1(x1) = 0.2, 4,(x) = 0.3; A,(x1) = 0.9, 4,(x,) = 0.6 and u be a fuzzy subset of Y defined as u(y;) = 0.4, u(y,) = 0.1,
u(ys) = 0.2. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies 7: LX — L and n: L' — L as follows:

1 if A=0, orl 1 if,u:(_), or 1
t(A)=13 W A=4,4 nlu=y3 If p=u
0 otherwise 0 otherwise

are fuzzy topologies on X and Y. For r:%, then F is FUWCe-continuous but not FUWC-continuous because 1 — u is
;-fuzzy closed in Y and F*(1 — ) = A, isnot %—fuzzy open set in X.
Example 4.247 Let X = {x;,%,}, Y = {y1,y,,¥3} and F: XY be a FM defined by Gp(x;,y;) = 0.1, Gp(x;,v,) = 1,

Gr(x1,¥3) =0, Gp(x5,y;) = 0.6, Gr(x3,¥,) =1, and Gr(x,,v5) = 0.3. Let 1, and A, be a fuzzy subsets of X be defined as
A1(x1) = 0.2, 2,(x3) = 0.3; A,(x;) = 0.9, 4,(x,) = 0.9 and u be a fuzzy subset of Y defined as u(y;) = 0.4, u(y,) = 0.1,
u(ys) = 0.2. We assume that 1 = 1 and 0 = 0. Define L-fuzzy topologies t: L¥ — L and n: LY — L as follows:

1 if A=0, orl 1 if,u:C_), or 1
t(A) =43 ifA=4,4 n(w=13 if u=u
0 otherwise 0 otherwise

are fuzzy topologies on X and Y. For r = % then F is FLWCe-continuous but not FLWC-continuous because 1 — u is

%—fuzzy closedin Y, FY(1 — u) = A, isnot %—fuzzy open set in X.
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Example 4.348 Let X = {x;,%,}, Y = {y1,y,,¥3} and F:X'Y be a FM defined by G(x;,y;) = 0.1, Gp(x;,¥,) =1,
Gr(x1,y3) =0, Gp(x2,y1) = 0.5, Gp(x,¥,) =0, and Gr(x,,y;) = 1. Let A, and A, be a fuzzy subsets of X be defined as
A(x1) = 0.3, A,(x;) = 0.5; 1,(x;) = 0.4, A,(x,) = 0.4 and u,; and p, be a fuzzy subsets of Y defined as u,(y;) = 0.5,

w1 (¥2) = 0.5, uy;(v3) = 0.5 and p,(y;) = 0.4, p,(¥,) = 0.4, p,(y3) = 0.4 We assume that 1 =1 and 0 = 0. Define L-fuzzy
topologies 7: L* —» L and n: LY — L as follows:

1 if A=0, orl 1 if,u:(3, or 1
r(A)=437 I A=4 n(u) =17 1 p=pm,u
0 otherwise 0 otherwise

are fuzzy topologieson X and Y. For r = é then F is
(i) FUACe*-continuous but not FUW Ce-continuous because u, is %—fuzzy closedin Y and F*(u,) = A, is not ;-feo setin X.
(i) FLACe™-continuous but not FLW Ce-continuous because u, is %—fuzzy closed in Y and F“(u,) = 1, is not i-feo setin X.

References

[1] S. E. Abbas, M. A . Hebeshi and I. M. Taha, On fuzzy upper and lower semi-continuous multifunctions, The Journal of Fuzzy
Mathematics, 22 (4) (2014), 951--962.

[2] K. M. A. Al-hamadi and S. B. Nimse, On fuzzy a-continuous multifunctions, Miskolc Mathematical Notes, 11 (2) (2010), 105-112.

[3] M. Alimohammady, E.Ekici, S.Jafari and M. Roohi, On fuzzy upper and lower contra continuous multifunctions, Iranian Journal of
Fuzzy Systems, 8 (3) (2011), 149-158.

[4] C. Berge, Topological spaces including a treatment of multi-valued functions, Vector Spaces and Convexity, Oliver, Boyd London,
(1963).

[5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182--189.

[6] K. C. Chattopadhyay and S. K. Samanta, Fuzzy topology : fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy
sets and systems, 54 (2) (1993), 207--212.

[7] P. Dhanasekaran, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower e*(&s and d§p)-irresolute
multifunctions, (submitted).

[8] P. Dhanasekaran, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower almost contra e-continuous
multifunctions, (submitted).

[9] J. A. Goguen, The fuzzy Tychonoff Theorem, J. Math. Anal. Appl., 43(3) (1973), 734--742.

[10] U. Haohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659--673.

[11] U. Héhle and A. P. Sostak, A general theory of fuzzy topological spaces, Fuzzy Sets and Systems, 73 (1995), 131--149.

[12] U. Héhle and A. P. Sostak, Axiomatic Foundations of Fixed-Basis fuzzy topology, The Handbooks of Fuzzy sets series, Volume 3,
Kluwer Academic Publishers, (1999), 123--272.

[13] M. A . Hebeshi and I. M. Taha, Weaker forms of contra-continuous fuzzy multifunctions, The Journal of Fuzzy Mathematics, 23 (2)
(2015), 341--354.

[14] Y. C. Kim and J. W. Park, r-fuzzy §-closure and r-fuzzy 6-closure sets, J. Korea Fuzzy Logic and Intelligent systems, 10(6)
(2000), 557-563.

[15] Y. C. Kim, A. A. Ramadan and S. E. Abbas, Weaker forms of continuity in Sostak's fuzzy topology, Indian J. Pure and Appl. Math.,
34 (2) (2003), 311--333.

[16] Y. C. Kim, Initial L-fuzzy closure spaces, Fuzzy Sets and Systems., 133 (2003), 277-297.

[17] T. Kubiak, On fuzzy topologies, Ph.D. Thesis, A. Mickiewicz, Poznan, (1985).

[18] T. Kubiak and A.P. Sostak, Lower set valued fuzzy topologies, Questions Math., 20 (3) (1997), 423-429.

[19] Y. Liu and M. Luo, Fuzzy topology, World Scientific Publishing Singapore., (1997), 229-236.

[20] R. A. Mahmoud, An application of continuous fuzzy multifunctions, Chaos, Solitons and Fractals, 17 (2003), 833-841.

[21] M. N. Mukherjee and S. Malakar, On almost continuous and weakly continuous fuzzy multifunctions, Fuzzy Sets and Systems, 41
(1991), 113--125.

[22] N. S. Papageorgiou, Fuzzy topolgy and fuzzy multifunctions, J. Math. Anal. Appl., 109 (1985), 397-425.

[23] A. Prabhu, A. Vadivel and B. Vijayalakshmi, On fuzzy upper and lower e-continuous multifunctions, (submitted).

[24] A.P. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo Ser Il 11 (1985), 89--103.

[25] A. P. Sostak, Two decades of fuzzy topology : Basic ideas, Notion and results, Russian Math. Surveys, 44 (6) (1989), 125--186.

[26] A.P. Sostak, Basic structures of fuzzy topology, J. Math. Sciences 78 (6) (1996), 662--701.

[27] D. Sobana, V. Chandrasekar and A. Vadivel, Fuzzy e-continuity in Sostak's fuzzy topological spaces, (Submitted).

[28] M. Sujatha, M. Angayarkanni, B. Vijayalakshmi and A. Vadivel, On fuzzy upper and lower contra e-continuous multifunctions,
(submitted).

[29] E. Tsiporkova, B. De Baets and E. Kerre, A fuzzy inclusion based approach to upper inverse images under fuzzy multivalued
mappings, Fuzzy sets and systems, 85 (1997), 93--108.

[30] E. Tsiporkova, B. De Baets and E. Kerre, Continuity of fuzzy multivalued mappings, Fuzzy sets and systems, 94 (1998), 335--348.

[31] A. Vadivel and B. Vijayalakshmi, Fuzzy Almost e-continuous mappings and fuzzy e-connectedness in smooth topological spaces,
accepted in The Journal of Fuzzy Mathematics.

[32] C. K. Wong, Fuzzy topology: product and quotient theorems, J. Math. Anal. Appl, 45 (1974), 512-521.

JETIRA006350 | Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org | 187


http://www.jetir.org/

