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Abstract    In this paper, we introduce the concepts of fuzzy upper and fuzzy lower almost contra 𝑒∗ -continuous 

multifunctions, fuzzy upper and fuzzy lower weakly contra 𝑒∗-continuous multifunction on fuzzy topological spaces in �̂�ostak 

sense. Several characterizations and properties of these fuzzy upper (resp. fuzzy lower) almost contra 𝑒∗-continuous, fuzzy upper 

(resp. lower) weakly contra 𝑒∗-continuous multifunctions are presented and their mutual relationships are established in 𝐿-fuzzy 

topological spaces. Later, composition and union between these multifunctions have been studied.  
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 Introduction   

Kubiak [17] and �̂�ostak [24] introduced the notion of (L-)fuzzy topological space as a generalization of L-topological spaces 

(originally called (L-) fuzzy topological spaces by Chang [5] and Goguen [9]. It is the grade of openness of an L-fuzzy set. A general 

approach to the study of topological type structures on fuzzy powersets was developed in [[10]-[12], [17], [18], [24]-[26]]. 

Berge [4] introduced the concept multimapping 𝐹: 𝑋¨𝑌 where 𝑋 and 𝑌 are topological spaces. After Chang introduced the 

concept of fuzzy topology [5], continuity of multifunctions in fuzzy topological spaces have been defined and studied by many 

authors from different view points (eg. see [2], [3], [20]-[22]). Tsiporkova et al., [30] introduced the continuity of fuzzy multivalued 

mappings in the Chang's fuzzy topology [5]. Later, Abbas et al., [1] introduced the concepts of fuzzy upper and fuzzy lower 

semi-continuous multifunctions in L-fuzzy topological spaces. Recently, Sobana et al. [27] introduced the concept of 𝑟-fuzzy 

𝑒-open sets and 𝑟-fuzzy 𝑒-continuity in �̆�ostak's fuzzy topological spaces. Vadivel et. al., [31] introduced the concept of fuzzy 

almost 𝑒-continuity, fuzzy 𝑒-compactness in a fuzzy topological space in the sense of �̂�ostak [24]. Dhanasekaran et.al [8] 

introduced the concept of fuzzy upper and fuzzy lower almost contra 𝑒-continuous multifunction on fuzzy topological spaces in 

�̂�ostak sense. 

In this paper, we introduce the concepts of fuzzy upper and fuzzy lower almost contra 𝑒∗-continuous multifunctions, fuzzy 

upper and fuzzy lower weakly contra 𝑒∗ -continuous multifunction on fuzzy topological spaces in �̂� ostak sense. Several 

characterizations and properties of these multifunctions are presented and their mutual relationships are established in 𝐿-fuzzy 

topological spaces. Later, composition and union between these multifunctions have been studied. 

Throughout this paper, nonempty sets will be denoted by 𝑋, 𝑌 etc., 𝐿 = [0,1] and 𝐿0 = (0,1]. The family of all fuzzy sets in 

𝑋 is denoted by 𝐿𝑋 . The complement of an 𝐿-fuzzy set 𝜆 is denoted by 𝜆𝑐 . This symbol ¨ for a multifunction. 

For 𝛼 ∈ 𝐿, 𝛼(𝑥) = 𝛼 for all 𝑥 ∈ 𝑋. A fuzzy point 𝑥𝑡 for 𝑡 ∈ 𝐿0 is an element of 𝐿𝑋 such that 𝑥𝑡(𝑦) = (𝑡y=x 0ify  x. The 

family of all fuzzy points in 𝑋 is denoted by 𝑃𝑡(𝑋). A fuzzy point 𝑥𝑡 ∈ 𝜆 iff 𝑡 ≤ 𝜆(𝑥). 
All other notations are standard notations of 𝐿-fuzzy set theory. 

 

 2.Preliminaries    

 Definition 2.1 1 [1] Let 𝐹: 𝑋¨𝑌, then 𝐹 is called a fuzzy multifunction (FM, for short) if and only if 𝐹(𝑥) ∈ 𝐿𝑌 for each 𝑥 ∈
𝑋.  The degree of membership of 𝑦  in 𝐹(𝑥)  is denoted by 𝐹(𝑥)(𝑦) = 𝐺𝐹(𝑥, 𝑦)  for any (𝑥, 𝑦) ∈ 𝑋 × 𝑌.  The domain of 𝐹, 
denoted by 𝑑𝑜𝑚𝑎𝑖𝑛(𝐹) and the range of 𝐹, denoted by 𝑟𝑛𝑔(𝐹), for any 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, are defined by :  

 𝑑𝑜𝑚(𝐹)(𝑥) = ∨
𝑦∈𝑌

𝐺𝐹(𝑥, 𝑦)and𝑟𝑛𝑔(𝐹)(𝑦) = ∨
𝑥∈𝑋

𝐺𝐹(𝑥, 𝑦). 

  Definition 2.2 2 [1] Let 𝐹: 𝑋¨𝑌 be a FM. Then 𝐹 is called:   

    • Normalized iff for each 𝑥 ∈ 𝑋, there exixts 𝑦0 ∈ 𝑌 such that 𝐺𝐹(𝑥, 𝑦0) = 1.  

    • A crisp iff 𝐺𝐹(𝑥, 𝑦) = 1 for each 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌.  

  Definition 2.3 3 [1] Let 𝐹: 𝑋¨𝑌 be a FM. Then   

    • The image of 𝜆 ∈ 𝐿𝑋 is an 𝐿-fuzzy set 𝐹(𝜆) ∈ 𝐿𝑌 defined by  
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 𝐹(𝜆)(𝑦) = ∨
𝑥∈𝑋

[𝐺𝐹(𝑥, 𝑦) ∧ 𝜆(𝑥)]. 

 

    • The lower inverse of 𝜇 ∈ 𝐿𝑌 is an 𝐿-fuzzy set 𝐹𝑙(𝜇) ∈ 𝐿𝑋 defined by  

 𝐹𝑙(𝜇)(𝑥) = ∨
𝑦∈𝑌

[𝐺𝐹(𝑥, 𝑦) ∧ 𝜇(𝑦)]. 

 

    • The upper inverse of 𝜇 ∈ 𝐿𝑌 is an 𝐿-fuzzy set 𝐹𝑢(𝜇) ∈ 𝐿𝑋 defined by  

 𝐹𝑢(𝜇)(𝑥) = ∧
𝑦∈𝑌

[𝐺𝐹
𝑐(𝑥, 𝑦) ∨ 𝜇(𝑦)]. 

 

 Theorem 2.14  [1] Let 𝐹: 𝑋¨𝑌 be a FM. Then   

    • 𝐹(𝜆1) ≤ 𝐹(𝜆2) if 𝜆1 ≤ 𝜆2.  

    • 𝐹𝑙(𝜇1) ≤ 𝐹𝑙(𝜇2) and 𝐹𝑢(𝜇1) ≤ 𝐹𝑢(𝜇2) if 𝜇1 ≤ 𝜇2.  

    • 𝐹𝑙(𝜇𝑐) = (𝐹𝑢(𝜇))𝑐.  

    • 𝐹𝑢(𝜇𝑐) = (𝐹𝑙(𝜇))𝑐.  

    • 𝐹(𝐹𝑢(𝜇)) ≤ 𝜇 if 𝐹 is a crisp.  

    • 𝐹𝑢(𝐹(𝜆)) ≥ 𝜆 if 𝐹 is a crisp.  

 Definition 2.4 5  [1] Let 𝐹: 𝑋¨𝑌 and 𝐻: 𝑌¨𝑍 be two FM. Then the composition 𝐻 ∘ 𝐹 is defined by  

 ((𝐻 ∘ 𝐹)(𝑥))(𝑧) = ∨
𝑦∈𝑌

[𝐺𝐹(𝑥, 𝑦) ∧ 𝐺𝐻(𝑦, 𝑧)]. 

  Theorem 2.2 6  [1] Let 𝐹: 𝑋¨𝑌 and 𝐻: 𝑌¨𝑍 be FM. Then we have the following   

    • (𝐻 ∘ 𝐹) = 𝐹(𝐻).  

    • (𝐻 ∘ 𝐹)𝑢 = 𝐹𝑢(𝐻𝑢).  

    • (𝐻 ∘ 𝐹)𝑙 = 𝐹𝑙(𝐻𝑙).  

  Theorem 2.37  [1] Let 𝐹𝑖: 𝑋¨𝑌 be a FM. Then we have the following   

    • (⋃𝑖∈Γ 𝐹𝑖)(𝜆) = ∨
𝑖∈Γ

𝐹𝑖(𝜆).  

    • (⋃𝑖∈Γ 𝐹𝑖)
𝑙(𝜇) = ∨

𝑖∈Γ
𝐹𝑖
𝑙(𝜇).  

    • (⋃𝑖∈Γ 𝐹𝑖)
𝑢(𝜇) = ∧

𝑖∈Γ
𝐹𝑖
𝑢(𝜇).  

  Definition 2.58  [12,17,19,24] An 𝐿-fuzzy topological space (𝐿-fts, in short) is a pair (𝑋, 𝜏), where 𝑋 is a nonempty set and 

𝜏: 𝐿𝑋 → 𝐿 is a mapping satisfying the following properties.   

    • 𝜏(0) = 𝜏(1) = 1,  

    • 𝜏(𝜇1 ∧ 𝜇2) ≥ 𝜏(𝜇1) ∧ 𝜏(𝜇2), for any 𝜇1, 𝜇2 ∈ 𝐼𝑋.  

    • 𝜏(∨𝑖∈Γ 𝜇𝑖) ≥∧𝑖∈Γ 𝜏(𝜇𝑖), for any {𝜇𝑖}𝑖∈Γ ⊂ 𝐼𝑋,  

  Then 𝜏 is called an 𝐿-fuzzy topology on 𝑋. For every 𝜆 ∈ 𝐿𝑋, 𝜏(𝜆) is called the degree of openness of the 𝐿-fuzzy set 𝜆. 
A mapping 𝑓: (𝑋, 𝜏) → (𝑌, 𝜂) is said to be continuous with respect to 𝐿-fuzzy topologies 𝜏 and 𝜂 iff 𝜏(𝑓−1(𝜇)) ≥ 𝜂(𝜇) for 

each 𝜇 ∈ 𝐿𝑌 . 
  Theorem 2.4 9  [6,15,16,19] Let (𝑋, 𝜏)  be a an 𝐿 -fts. Then for each 𝜆 ∈ 𝐿𝑋, 𝑟 ∈ 𝐿0,  we define 𝐿 -fuzzy operators 

𝐶𝜏𝑎𝑛𝑑𝐼𝜏: 𝐿
𝑋 × 𝐿0 → 𝐿𝑋 as follows: 

 𝐶𝜏(𝜆, 𝑟) =∧ {𝜇 ∈ 𝐿𝑋: 𝜆 ≤ 𝜇, 𝜏(1 − 𝜇) ≥ 𝑟}. 
 𝐼𝜏(𝜆, 𝑟) =∨ {𝜇 ∈ 𝐿𝑋: 𝜆 ≥ 𝜇, 𝜏(𝜇) ≥ 𝑟}. 
  For 𝜆, 𝜇 ∈ 𝐿𝑋 and 𝑟, 𝑠 ∈ 𝐿0, the operator 𝐶𝜏 satisfies the following conditions:   

    • 𝐶𝜏(0, 𝑟) = 0,  

    • 𝜆 ≤ 𝐶𝜏(𝜆, 𝑟),  

    • 𝐶𝜏(𝜆, 𝑟) ∨ 𝐶𝜏(𝜇, 𝑟) = 𝐶𝜏(𝜆 ∨ 𝜇, 𝑟),  

    • 𝐶𝜏(𝐶𝜏(𝜆, 𝑟), 𝑟) = 𝐶𝜏(𝜆, 𝑟),  

    • 𝐶𝜏(𝜆, 𝑟) = 𝜆 iff 𝜏(𝜆𝑐) ≥ 𝑟.  

    • 𝐶𝜏(𝜆
𝑐 , 𝑟) = (𝐼𝜏(𝜆, 𝑟))

𝑐 and 𝐼𝜏(𝜆
𝑐 , 𝑟) = (𝐶𝜏(𝜆, 𝑟))

𝑐.  

   Definition 2.610  [1] Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:   

    • Fuzzy upper semi (or Fuzzy upper) (in short, 𝐹𝑈𝑆 (or 𝐹𝑈))-continuous at a 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) 
for each 𝜇 ∈ 𝐿𝑌 and 𝜂(𝜇) ≥ 𝑟, there exists 𝜆 ∈ 𝐿𝑋 , 𝜏(𝜆) ≥ 𝑟 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇). 𝐹 is 𝐹𝑈-continuous 

iff it is 𝐹𝑈-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

    • Fuzzy lower semi (or Fuzzy lower) (in short, 𝐹𝐿𝑆 (or 𝐹𝐿))-continuous at a 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) 
for each 𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇) ≥ 𝑟, there exists 𝜆 ∈ 𝐿𝑋 ,  𝜏(𝜆) ≥ 𝑟  and 𝑥𝑡 ∈ 𝜆  such that 𝜆 ≤ 𝐹𝑙(𝜇).  𝐹  is 𝐹𝐿-continuous iff it is 

𝐹𝐿-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

    • Fuzzy continuous if it is 𝐹𝑈-continuous and 𝐹𝐿-continuous.  

   Theorem 2.511  [1] Let 𝐹: 𝑋¨𝑌 be a fuzzy multifunction between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂). Let 𝜇 ∈ 𝐿𝑌. Then we have 

the following   

    • 𝐹 is 𝐹𝐿-continuous iff 𝜏(𝐹𝑙(𝜇)) ≥ 𝜂(𝜇).  

    • If 𝐹 is normalized, then 𝐹 is 𝐹𝑈-continuous iff 𝜏(𝐹𝑢(𝜇)) ≥ 𝜂(𝜇).  

    • 𝐹 is 𝐹𝐿-continuous iff 𝜏(1 − 𝐹𝑢(𝜇)) ≥ 𝜂(1 − 𝜇).  

    • If 𝐹 is normalized, then 𝐹 is 𝐹𝑈-continuous iff 𝜏(1 − 𝐹𝑙(𝜇)) ≥ 𝜂(1 − 𝜇).  
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   Definition 2.7 12 [13] Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:   

    • Fuzzy upper almost contra continuous (𝐹𝑈𝐴𝐶-continuous, for short) at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) 
for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc there exist 𝜆 ∈ 𝐿𝑋, 𝜏(𝜆) ≥ 𝑟 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  

    • Fuzzy lower almost contra continuous (𝐹𝐿𝐴𝐶-continuous, for short) at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) 
for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc there exist 𝜆 ∈ 𝐿𝑋, 𝜏(𝜆) ≥ 𝑟 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇).  

    • 𝐹𝑈𝐴𝐶-continuous (resp. 𝐹𝐿𝐴𝐶-continuous) iff it is 𝐹𝑈𝐴𝐶-continuous (resp. 𝐹𝐿𝐴𝐶-continuous) at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

 Definition 2.8 13 [13] Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called.   

    • Fuzzy upper weakly contra continuous (𝐹𝑈𝑊𝐶-continuous, in short) at an 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) 
for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed, there exist 𝜆 ∈ 𝐿𝑋, 𝜏(𝜆) ≥ 𝑟 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)).  

    • Fuzzy lower weakly contra continuous (𝐹𝐿𝑊𝐶-continuous, in short) at an 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) for 

each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed, there exist 𝜆 ∈ 𝐿𝑋, 𝜏(𝜆) ≥ 𝑟 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝐶𝜂(𝜇, 𝑟)).  

    • 𝐹𝑈𝑊𝐶 -continuous (resp. 𝐹𝐿𝑊𝐶 -continuous) iff it is 𝐹𝑈𝑊𝐶 -continuous (resp. 𝐹𝐿𝑊𝐶 -continuous) at every 𝑥𝑡 ∈
𝑑𝑜𝑚(𝐹).  

  Definition 2.9 14  [14] Let (𝑋, 𝜏) be a fts. For 𝜆, 𝜇 ∈ 𝐼𝑋  and 𝑟 ∈ 𝐼0, 𝜆 is called 𝑟-fuzzy regular open (for short, 𝑟-fro) 

(resp. 𝑟-fuzzy regular closed (for short, 𝑟-frc)) if 𝜆 = 𝐼𝜏(𝐶𝜏(𝜆, 𝑟), 𝑟) (resp. 𝜆 = 𝐶𝜏(𝐼𝜏(𝜆, 𝑟), 𝑟)).   

 Definition 2.10 15 [14] Let (𝑋, 𝜏) be a fts. Then for each 𝜇 ∈ 𝐼𝑋, 𝑥𝑡 ∈ 𝑃𝑡(𝑋) and 𝑟 ∈ 𝐼0,   

    • 𝜇 is called r-open 𝑄𝜏-neighbourhood of 𝑥𝑡 if 𝑥𝑡𝑞𝜇 with 𝜏(𝜇) ≥ 𝑟.  

    • 𝜇 is called r-open 𝑅𝜏-neighbourhood of 𝑥𝑡 if 𝑥𝑡𝑞𝜇 with 𝜇 = 𝐼𝜏(𝐶𝜏(𝜇, 𝑟), 𝑟).  

   

     We denoted  

 𝑄𝜏(𝑥𝑡 , 𝑟) = {𝜇 ∈ 𝐼𝑋: 𝑥𝑡𝑞𝜇, 𝜏(𝜇) ≥ 𝑟}, 
 

 𝑅𝜏(𝑥𝑡 , 𝑟) = {𝜇 ∈ 𝐼𝑋: 𝑥𝑡𝑞𝜇, 𝜇 = 𝐼𝜏(𝐶𝜏(𝜇, 𝑟), 𝑟)}. 
  

 Definition 2.11 16 [14] Let (𝑋, 𝜏) be a fts. Then for each 𝜆 ∈ 𝐼𝑋, 𝑥𝑡 ∈ 𝑃𝑡(𝑋) and 𝑟 ∈ 𝐼0,   

    • 𝑥𝑡 is called r-𝜏 cluster point of 𝜆 if for every 𝜇 ∈ 𝑄𝜏(𝑥𝑡 , 𝑟), we have 𝜇𝑞𝜆.  

    • 𝑥𝑡 is called r-𝛿 cluster point of 𝜆 if for every 𝜇 ∈ 𝑅𝜏(𝑥𝑡 , 𝑟), we have 𝜇𝑞𝜆.  

    • An 𝛿-closure operator is a mapping 𝐷𝜏: 𝐼
𝑋 × 𝐼 → 𝐼𝑋 defined as follows: 𝛿𝐶𝜏(𝜆, 𝑟) or 𝐷𝜏(𝜆, 𝑟) =∨ {𝑥𝑡 ∈ 𝑃𝑡(𝑋): 𝑥𝑡  is 

r-𝛿-cluster point of 𝜆}. 
Equivalently, 𝛿𝐶𝜏(𝜆, 𝑟) =∧ {𝜇 ∈ 𝐼𝑋: 𝜇 ≥ 𝜆, 𝜇isa𝑟 − frcset} and 𝛿𝐼𝜏(𝜆, 𝑟) =∨ {𝜇 ∈ 𝐼𝑋: 𝜇 ≤ 𝜆, 𝜇isa𝑟 − froset}.  

  Definition 2.12 17 [14] Let (𝑋, 𝜏) be a fuzzy topological space. For 𝜆 ∈ 𝐼𝑋 and 𝑟 ∈ 𝐼0, 𝜆 is called 𝑟-fuzzy 𝛿-closed iff 𝜆 =
𝛿𝐶𝜏(𝜆, 𝑟) or 𝐷𝜏(𝜆, 𝑟).   

 Definition 2.1318  [27] Let (𝑋, 𝜏) be a an 𝐿-fts. Then for each 𝜆, 𝜇 ∈ 𝐿𝑋 , 𝑟 ∈ 𝐿0. Then 𝜆 is called   

    • 𝜆 is called an 𝑟-fuzzy 𝑒-open (briefly, 𝑟-feo) set if 𝜆 ≤ 𝐶𝜏(𝛿𝜏(𝜆, 𝑟), 𝑟) ∨ 𝐼𝜏(𝛿𝐶𝜏(𝜆, 𝑟), 𝑟).  

    • 𝜆 is called an 𝑟-fuzzy 𝑒-closed (briefly, 𝑟-feo) set if 𝐶𝜏(𝛿𝐼𝜏(𝜆, 𝑟), 𝑟) ∧ 𝐼𝜏(𝛿𝐶𝜏(𝜆, 𝑟), 𝑟) ≤ 𝜆.  

 Definition 2.1419  [27] Let (𝑋, 𝜏) be an 𝐿-fts. Then for each 𝜆, 𝜇 ∈ 𝐿𝑋, 𝑟 ∈ 𝐿0. Then 𝜆 is called   

    • 𝑒𝐼𝜏(𝜆, 𝑟) =∨ {𝜇 ∈ 𝐼𝑋: 𝜇 ≤ 𝜆, 𝜇 is a r-feo set } is called the 𝑟-fuzzy e-interior of 𝜆.  

    • 𝑒𝐶𝜏(𝜆, 𝑟) =∧ {𝜇 ∈ 𝐼𝑋: 𝜇 ≥ 𝜆, 𝜇 is a r-fec set } is called the 𝑟-fuzzy e-closure of 𝜆.  

 Definition 2.15 20 [23,28] Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:   

    • Fuzzy upper contra 𝑒 (𝐹𝑈𝐶𝑒, in short) (resp. FUe)-continuous any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 

𝜇 ∈ 𝐿𝑌  and 𝜂(𝜇𝑐) ≥ 𝑟 (resp. 𝜂(𝜇) ≥ 𝑟) there exist 𝑟-fuzzy 𝑒-open set (𝑟-feo set, in short), 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧
𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  

    • Fuzzy lower contra 𝑒 (𝐹𝐿𝐶𝑒, in short) (resp. FLe)-continuous any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) for each 

𝜇 ∈ 𝐿𝑌 and 𝜂(𝜇𝑐) ≥ 𝑟 (resp. 𝜂(𝜇) ≥ 𝑟) there exist 𝑟-fuzzy 𝑒-open set (𝑟-feo set, in short), 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤
𝐹𝑙(𝜇).  

    • FUCe (resp. FLCe, FUe and FLe)-continuous iff it is FUCe (resp. FLCe, FUe and FLe)-continuous at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

 Definition 2.16 21 [7] Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:   

    • Fuzzy upper 𝑒∗ (in short, 𝐹𝑈𝑒∗)-irresolute at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 

𝑟-f𝑒∗o set, there exists 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  

    • Fuzzy lower 𝑒∗  (in short, 𝐹𝐿𝑒∗)-irresolute at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑙(𝜇) for each 𝜇 ∈ 𝐿𝑌  and 

𝑟-f𝑒∗o set, there exists 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇).  

    • 𝐹𝑈𝑒∗-irresolute and FL𝑒∗-irresolute iff it is 𝐹𝑈𝑒∗-irresolute and FL𝑒∗-irresolute at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

  Definition 2.17 22 [28] Let (𝑋, 𝜏) be an 𝐿-fts. Then for each 𝜆 ∈ 𝐿𝑋 and 𝑟 ∈ 𝐿0 we define 𝐿-fuzzy operator 𝑒-𝑘𝑒𝑟𝜏: 𝐿
𝑋 ×

𝐿0 → 𝐿𝑋 as follows:   

 𝑒-𝑘𝑒𝑟𝜏(𝜆, 𝑟) =∧ {𝜇 ∈ 𝐿𝑋: 𝜆 ≤ 𝜇, 𝜇is 𝑟-feo-set}. 
  Lemma 2.123  [28] For 𝜆 in an 𝐿-fts (𝑋, 𝜏), if 𝜆 is 𝑟-feo-set then 𝜆 = 𝑒-𝑘𝑒𝑟𝜏(𝜆, 𝑟).   

 

 3.Fuzzy upper and lower almost contra 𝒆∗-continuous multifunctions  

  Definition 3.124  Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called:   

    • Fuzzy upper almost contra 𝑒∗-continuous (𝐹𝑈𝐴𝐶𝑒∗-continuous, in short) at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈
𝐹𝑢(𝜇) for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc, there exist 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤ 𝐹𝑢(𝜇).  

    • Fuzzy lower almost contra 𝑒∗-continuous (𝐹𝐿𝐴𝐶𝑒∗-continuous, in short) at any 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈
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𝐹𝑙(𝜇) for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc, there exist 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇).  

    • Fuzzy upper almost contra 𝑒∗-continuous (resp. Fuzzy lower almost contra 𝑒∗-continuous) iff it is 𝐹𝑈𝐴𝐶𝑒∗-continuous 

(resp. 𝐹𝐿𝐴𝐶𝑒∗-continuous) at every 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

  Proposition 3.1 25  𝐹 is normalized implies 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous at an 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) 
for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc there exists 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑢(𝜇).   

 Theorem 3.1 26   Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝜇 ∈ 𝐿𝑌 , then the following are equivalent:   

    • 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.  

    • 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o set, for any 𝜇 is 𝑟-frc.  

    • 1 − 𝐹𝑢(𝜇) is 𝑟-f𝑒∗o set, for any 𝜇 is 𝑟-fro.  

    • 1 − 𝐹𝑢(𝐼𝜂(𝐶𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o-set, for any 𝜂(𝜇) ≥ 𝑟.  

    • 𝐹𝑙(𝐶𝜂(𝐼𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o-set, for any 𝜂(1 − 𝜇) ≥ 𝑟.  

    Proof. (i) ⇒ (ii): Let 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹), 𝜇 ∈ 𝐿𝑌 , 𝜇 is 𝑟-frc and 𝑥𝑡 ∈ 𝐹𝑙(𝜇), then there exist 𝑟-f𝑒∗o-set 𝜆 ∈ 𝐿𝑋  and 𝑥𝑡 ∈ 𝜆 

such that 𝜆 ≤ 𝐹𝑙(𝜇) and hence 𝑥𝑡 ∈ 𝑒∗𝐼𝜏(𝐹
𝑙(𝜇), 𝑟). Therefore, we obtain 𝐹𝑙(𝜇) ≤ 𝑒∗𝐼𝜏(𝐹

𝑙(𝜇), 𝑟). Thus 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o set. 

(ii) ⇒ (i): Let 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹), 𝜇 ∈ 𝐿𝑌 , 𝜇 is 𝑟-frc and 𝑥𝑡 ∈ 𝐹𝑙(𝜇) we have by (ii), 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o-set. Let 𝐹𝑙(𝜇) = 𝜆(say), 

then there exists 𝑟-f𝑒∗o-set 𝜆 ∈ 𝐿𝑋  and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝜇). Thus 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous. 

(ii) ⇒ (iii): Let 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fro, hence by (ii), 𝐹𝑙(1 − 𝜇) = 1 − 𝐹𝑢(𝜇) is 𝑟-f𝑒∗o set. 

(iii) ⇒ (ii): It is similar to that of (ii) ⇒ (iii). 

(iii) ⇒ (iv): Let 𝜇 ∈ 𝐿𝑌 and 𝜂(𝜇) ≥ 𝑟. Since 𝐼𝜂(𝐶𝜂(𝜇, 𝑟), 𝑟) is 𝑟-fro, then 1 − 𝐹𝑢(𝐼𝜂(𝐶𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o set. 

(iv) ⇒ (iii): Obvious. 

(iv) ⇒ (v): Let 𝜇 ∈ 𝐿𝑌 and 𝜂(1 − 𝜇) ≥ 𝑟 hence by (iv), 1 − 𝐹𝑢(𝐼𝜂(𝐶𝜂(1 − 𝜇, 𝑟), 𝑟)) = 𝐹𝑙(𝐶𝜂(𝐼𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o set. 

(v) ⇒ (ii): Obvious.              

We state the following result without proof in view of the above theorem. 

 Theorem 3.2 27   Let 𝐹: 𝑋¨𝑌 be a FM and normalized between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝜇 ∈ 𝐿𝑌, then the following are 

equivalent:   

    • 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous.  

    • 𝐹𝑢(𝜇) is 𝑟-f𝑒∗o-set for any 𝜇 is 𝑟-frc.  

    • 1 − 𝐹𝑙(𝜇) is 𝑟-f𝑒∗o-set for any 𝜇 is 𝑟-fro.  

    • 1 − 𝐹𝑙(𝐼𝜂(𝐶𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o set for any 𝜂(𝜇) ≥ 𝑟.  

    • 𝐹𝑢(𝐶𝜂(𝐼𝜂(𝜇, 𝑟), 𝑟)) is 𝑟-f𝑒∗o set for any 𝜂(1 − 𝜇) ≥ 𝑟.  

    Proof. This can be proved in a similar way as Theorem (3.1)   

 Remark 3.128 The following implications hold.   

    • 𝐹𝑈𝐶𝑒-continuous ⇒ 𝐹𝑈𝐴𝐶𝑒∗-continuous ⇐ 𝐹𝑈𝐴𝐶-continuous.  

    • 𝐹𝐿𝐶𝑒-continuous ⇒ 𝐹𝐿𝐴𝐶𝑒∗-continuous ⇐ 𝐹𝐿𝐴𝐶-continuous.  

In general the converses are not true. 

Example 3.129  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2 , 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.8 , 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0.7, 𝐺𝐹(𝑥2, 𝑦1) = 0.5, 𝐺𝐹(𝑥2, 𝑦2) = 1, and 𝐺𝐹(𝑥2, 𝑦3) = 0.6. Let 𝜆1 and 𝜆2 be a fuzzy subsets of 𝑋 be defined as 

𝜆1(𝑥1) = 0.4 , 𝜆1(𝑥2) = 0.3 ; 𝜆2(𝑥1) = 0.3 , 𝜆2(𝑥2) = 0.4,  𝜇1  and 𝜇2  be a fuzzy subsets of 𝑌  defined as 𝜇1(𝑦1) = 0.5 , 

𝜇1(𝑦2) = 0.5, 𝜇1(𝑦3) = 0.5 and 𝜇2(𝑦1) = 0.5, 𝜇2(𝑦2) = 0.6, 𝜇2(𝑦3) = 0.7. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy 

topologies 𝜏: 𝐿𝑋 → 𝐿 and 𝜂: 𝐿𝑌 → 𝐿 as follows: 1 1
1 1 22 2

1 0, 1 1 0, 1

( ) ( ) ,

0 0

if or if or

if if

otherwise otherwise

 

        

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 =
1

2
, 1 − 𝜇1 is 

1

2
 frc set in 𝑌 and 𝐹𝑢(1 − 𝜇1) = 𝜇1 is 

1

2
-f𝑒∗o set in 𝑋. Hence 𝐹 is 

𝐹𝑈𝐴𝐶𝑒∗-continuous but not 𝐹𝑈𝐶𝑒-continuous. As 1 − 𝜇2 is closed in (𝑌, 𝜂), 𝐹𝑢(1 − 𝜇2)=𝜆2 is not 
1

2
-feo set in (𝑋, 𝜏).   

 Example 3.230  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2, 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.8, 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0.3, 𝐺𝐹(𝑥2, 𝑦1) = 0.5, 𝐺𝐹(𝑥2, 𝑦2) = 1, and 𝐺𝐹(𝑥2, 𝑦3) = 0.6. Let 𝜆1 and 𝜆2 be a fuzzy subset of 𝑋 be defined as 

𝜆1(𝑥1) = 0.4 , 𝜆1(𝑥2) = 0.1 ; 𝜆2(𝑥1) = 0.3 , 𝜆2(𝑥2) = 0.3,  𝜇1  and 𝜇2  be a fuzzy subsets of 𝑌  defined as 𝜇1(𝑦1) = 0.5 , 

𝜇1(𝑦2) = 0.5, 𝜇1(𝑦3) = 0.5 and 𝜇2(𝑦1) = 0.7, 𝜇2(𝑦2) = 0.7, 𝜇2(𝑦3) = 0.7. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy 

topologies 𝜏: 𝐿𝑋 → 𝐿 and 𝜂: 𝐿𝑌 → 𝐿 as follows: 1 1
1 1 22 2

1 0, 1 1 0, 1

( ) ( ) ,

0 0

if or if or

if if

otherwise otherwise

 

        

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 =
1

2
, as 1 − 𝜇1 is 

1

2
-𝑓𝑟𝑐 set in 𝑌 and 𝐹𝑙(1 − 𝜇1) = 𝜇1 is 

1

2
-f𝑒∗o set in 𝑋. Hence 𝐹 

is 𝐹𝐿𝐴𝐶𝑒∗-continuous but not 𝐹𝐿𝐶𝑒-continuous because 1 − 𝜇2 is closed in 𝑌, 𝐹𝑙(1 − 𝜇2) = 𝜆2 is not 
1

2
-feo set in 𝑋.   
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 Example 3.331  Let 𝑋 = {𝑥1, 𝑥2}, 𝑌 = {𝑦1, 𝑦2, 𝑦3} and 𝐹: 𝑋¨𝑌 be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.4, 𝐺𝐹(𝑥1, 𝑦2) = 0.6, 

𝐺𝐹(𝑥1, 𝑦3) = 0.2, 𝐺𝐹(𝑥2, 𝑦1) = 0.2, 𝐺𝐹(𝑥2, 𝑦2) = 0.1, and 𝐺𝐹(𝑥2, 𝑦3) = 0.3. Let 𝜆 be a fuzzy subset of 𝑋 defined as 𝜆(𝑥1) =

0.2, 𝜆(𝑥2) = 0.1 and 𝜇 be a fuzzy subset of 𝑌 defined as 𝜇(𝑦1) = 0.3, 𝜇(𝑦2) = 0.4, 𝜇(𝑦3) = 0.5. We assume that 1 = 1 and 

0 = 0 . Define 𝐿 -fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿  and 𝜂: 𝐿𝑌 → 𝐿  as follows: 

1 1
2 2

1 0, 1 1 0, 1

( ) ( )

0 0

if or if or

if if

otherwise otherwise

 

       

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=
1

2
, then 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous but not 𝐹𝑈𝐴𝐶-continuous because 1 − 𝜇 is 

1

2
-frc 

in 𝑌 and 𝐹𝑢(1 − 𝜇) = (0. 6𝑥1 , 0. 7𝑥2) is not 
1

2
-fuzzy open set in 𝑋.   

 Example 3.432  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2, 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.2, 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0, 𝐺𝐹(𝑥2, 𝑦1) = 0.5, 𝐺𝐹(𝑥2, 𝑦2) = 0, and 𝐺𝐹(𝑥2, 𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subsets of 𝑋 be defined as 

𝜆1(𝑥1) = 0.3, 𝜆1(𝑥2) = 0.5; 𝜆2(𝑥1) = 0.2, 𝜆2(𝑥2) = 0.5 and 𝜇 be a fuzzy subset of 𝑌 defined as 𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 

𝜇(𝑦3) = 0.1 . We assume that 1 = 1  and 0 = 0 . Define 𝐿 -fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿  and 𝜂: 𝐿𝑌 → 𝐿  as follows: 

1 1
12 2

1 0, 1 1 0, 1

( ) ( )

0 0

if or if or

if if

otherwise otherwise

 

       

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 =
1

2
, then 𝐹  is 𝐹𝐿𝐴𝐶𝑒∗-continuous but not 𝐹𝐿𝐴𝐶-continuous because 1 − 𝜇 is 

1

2
-frc in 𝑌, 𝐹𝑙(1 − 𝜇) = 𝜆2 is not 

1

2
-fuzzy open set in 𝑋.   

 Theorem 3.3 33  Let 𝐹:𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂). If 𝑒∗𝐶𝜏(𝐹
𝑢(𝜇), 𝑟) ≤ 𝐹𝑢(𝑒∗-𝑘𝑒𝑟𝜂(𝜇, 𝑟)) for any 

𝜇 ∈ 𝐿𝑌 , then 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.   

    Proof. Suppose that 𝑒∗𝐶𝜏(𝐹
𝑢(𝜇), 𝑟) ≤ 𝐹𝑢(𝑒∗-𝑘𝑒𝑟𝜂(𝜇, 𝑟)) for any 𝜇 ∈ 𝐿𝑌. Let 𝜈 ∈ 𝐿𝑌 and 𝜈 is 𝑟-f𝑒∗o by Lemma (3.1), 

we have,  

 𝑒∗𝐶𝜏(𝐹
𝑢(𝜈), 𝑟) ≤ 𝐹𝑢(𝑒∗-𝑘𝑒𝑟𝜂(𝜈, 𝑟)) = 𝐹𝑢(𝜈).  

 This implies that 𝑒∗𝐶𝜏(𝐹
𝑢(𝜈), 𝑟) = 𝐹𝑢(𝜈)  and hence 1 − 𝐹𝑢(𝜈)  is 𝑟 -f 𝑒∗ o-set. Thus by Theorem (3.1) (iii) 𝐹  is 

𝐹𝐿𝐴𝐶𝑒∗-continuous.              

 Theorem 3.434  Let 𝐹: 𝑋¨𝑌  be a FM and normalized between two 𝐿 -fts's (𝑋, 𝜏)  and (𝑌, 𝜂) . If 𝑒∗𝐶𝜏(𝐹
𝑙(𝜇), 𝑟) ≤

𝐹𝑙(𝑒∗-𝑘𝑒𝑟𝜂(𝜇, 𝑟)) for any 𝜇 ∈ 𝐿𝑌 then 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous.   

    Proof. Suppose that 𝑒∗𝐶𝜏(𝐹
𝑙(𝜇), 𝑟) ≤ 𝐹𝑙(𝑒∗-𝑘𝑒𝑟𝜂(𝜇, 𝑟)) for any 𝜇 ∈ 𝐿𝑌. Let 𝜈 ∈ 𝐿𝑌 and 𝜈 is 𝑟-f𝑒∗o by Lemma (2.1), we 

have  

 𝑒∗𝐶𝜏(𝐹
𝑙(𝜈), 𝑟) ≤ 𝐹𝑙(𝑒∗-𝑘𝑒𝑟𝜂(𝜈, 𝑟)) = 𝐹𝑙(𝜈).  

 This implies that 𝑒∗𝐶𝜏(𝐹
𝑙(𝜈), 𝑟) = 𝐹𝑙(𝜈)  and hence 1 − 𝐹𝑙(𝜈)  is 𝑟 -f 𝑒∗ o-set. Thus by Theorem (3.2)(iii), 𝐹  is 

𝐹𝑈𝐴𝐶𝑒∗-continuous.              

 Theorem 3.535  Let {𝐹𝑖}𝑖∈𝛤  be a family of 𝐹𝐿𝐴𝐶𝑒∗ -continuous between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂). Then⋃𝑖∈𝛤 𝐹𝑖  is 

𝐹𝐿𝐴𝐶𝑒∗-continuous.   

    Proof. Let 𝜇 ∈ 𝐿𝑌  and 𝜇 is 𝑟-frc, then (⋃𝑖∈Γ 𝐹𝑖)
𝑙(𝜇) = ∨

𝑖∈Γ
(𝐹𝑖

𝑙(𝜇)) by Theorem (2.3)(ii). Since {𝐹𝑖}𝑖∈Γ is a family of 

𝐹𝐿𝐴𝐶𝑒∗-continuous between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂), then 𝐹𝑖
𝑙(𝜇) is 𝑟-f𝑒∗o-set for each 𝑖 ∈ Γ. Then for each 𝜇 ∈ 𝐿𝑌 and 𝜇 

is 𝑟-frc, we have, (⋃𝑖∈Γ 𝐹𝑖)
𝑙(𝜇) = ∨

𝑖∈Γ
(𝐹𝑖

𝑙(𝜇)) is 𝑟-f𝑒∗o set. Hence ⋃𝑖∈Γ 𝐹𝑖 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.               

Theorem 3.636  Let 𝐹1 and 𝐹2 be two normalized 𝐹𝑈𝐴𝐶𝑒∗-continuous between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂). Then 𝐹1 ∪ 𝐹2 

is 𝐹𝑈𝐴𝐶𝑒∗-continuous   

   Proof. Let 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc, then (𝐹1 ∪ 𝐹2)
𝑢(𝜇) = 𝐹1

𝑢(𝜇) ∧ 𝐹2
𝑢(𝜇) by Theorem (2.3)(iii). Since 𝐹1 and 𝐹2 be two 

normalized 𝐹𝑈𝐴𝐶𝑒∗-continuous between two 𝐿-fts's (𝑋, 𝜏) and (𝑌, 𝜂), then 𝐹𝑖
𝑢(𝜇) is 𝑟-f𝑒∗o-set for each 𝑖 ∈ {1,2}. Then for 

each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-frc, we have (𝐹1 ∪ 𝐹2)
𝑢(𝜇) = 𝐹1

𝑢(𝜇) ∧ 𝐹2
𝑢(𝜇) is 𝑟-f𝑒∗o-set. Hence 𝐹1 ∪ 𝐹2 is 𝐹𝑈𝐴𝐶𝑒∗-continuous.              

 Theorem 3.737   Let 𝐹: 𝑋¨𝑌  and 𝐻: 𝑌¨𝑍  be two FM's and let (𝑋, 𝜏),  (𝑌, 𝜂)  and (𝑍, 𝛿)  be three 𝐿 -fts's. If 𝐹  is 

𝐹𝐿𝑒∗-irresolute and 𝐻 is 𝐹𝐿𝐴𝐶𝑒∗-continuous, then 𝐻 ∘ 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.   

    Proof. Let 𝜈 ∈ 𝐿𝑍, 𝜈 is 𝑟-𝑓𝑟𝑐. Since 𝐻  is 𝐹𝐿𝐴𝐶𝑒∗-continuous, then from Theorem (3.1), 𝐻𝑙(𝜈) is 𝑟-f𝑒∗o set in 𝑌. 
Also, 𝐹 is 𝐹𝐿𝑒∗-irresolute implies 𝐹𝑙(𝐻𝑙(𝜈)) is 𝑟-f𝑒∗o set in 𝑋. Hence, we have (𝐻 ∘ 𝐹)𝑙(𝜈) = 𝐹𝑙(𝐻𝑙(𝜈)) is 𝑟-𝑓𝑒∗𝑜. Thus 

𝐻 ∘ 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.             

 Theorem 3.8 38  Let 𝐹:𝑋¨𝑌 and 𝐻: 𝑌¨𝑍 be two FM's and let (𝑋, 𝜏), (𝑌, 𝜂) and (𝑍, 𝛿) be three 𝐿-fts's. If 𝐹 and 𝐻 are 

normalized, 𝐹 is 𝐹𝑈𝑒∗-irresolute and 𝐻 is 𝐹𝑈𝐴𝐶𝑒∗-continuous, then 𝐻 ∘ 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous.   

    Proof. Proof is similar to the above Theorem (3.7) 

 Theorem 3.939  Let 𝐹: 𝑋¨𝑌 and 𝐻: 𝑌¨𝑍 be two FM's and let (𝑋, 𝜏), (𝑌, 𝜂) and (𝑍, 𝛿) be three 𝐿-fts's. If 𝐻 is normalized 

and 𝐻 is 𝐹𝑈𝐴𝐶𝑒∗-continuous and 𝐹 is 𝐹𝐿𝑒∗-irresolute, then 𝐻 ∘ 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.   
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    Proof. Let 𝜈 ∈ 𝐿𝑍, 𝜈 is 𝑟-𝑓𝑟𝑐. Since 𝐻 is 𝐹𝑈𝐴𝐶𝑒∗-continuous, then from Theorem (3.2), 𝐻𝑢(𝜈) is 𝑟-f𝑒∗o set in 𝑌. 
Also, 𝐹 is 𝐹𝐿𝑒∗-irresolute implies 𝐹𝑙(𝐻𝑢(𝜈)) is 𝑟-f𝑒∗o set in 𝑋. Hence, we have (𝐻 ∘ 𝐹)𝑙(𝜈) = 𝐹𝑙(𝐻𝑢(𝜈)) is 𝑟-𝑓𝑒∗𝑜. Thus 

𝐻 ∘ 𝐹 is 𝐹𝐿𝐴𝐶𝑒∗-continuous.             

We state the following result without proof in view of the above Theorem.   

 Theorem 3.1040  Let 𝐹: 𝑋¨𝑌 and 𝐻: 𝑌¨𝑍 be two FM's and let (𝑋, 𝜏), (𝑌, 𝜂) and (𝑍, 𝛿) be three 𝐿-fts's. If 𝐹 is normalized, 

𝐹 is 𝐹𝑈𝑒∗-irresolute and 𝐻 is 𝐹𝐿𝐴𝐶𝑒∗-continuous, then 𝐻 ∘ 𝐹 is 𝐹𝑈𝐴𝐶𝑒∗-continuous.   

 

 4.Fuzzy upper and lower weakly contra 𝒆∗-continuous multifunctions  

 Definition 4.141  Let 𝐹: 𝑋¨𝑌 be a FM between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝑟 ∈ 𝐿0. Then 𝐹 is called.   

    • Fuzzy upper weakly contra 𝑒∗-continuous (𝐹𝑈𝑊𝐶𝑒∗-continuous, in short) at an 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈
𝐹𝑢(𝜇)  for each 𝜇 ∈ 𝐿𝑌  and 𝜇  is 𝑟 -fuzzy closed, there exists 𝑟 -f 𝑒∗ o-set 𝜆 ∈ 𝐿𝑋  and 𝑥𝑡 ∈ 𝜆  such that 𝜆 ∧ 𝑑𝑜𝑚(𝐹) ≤
𝐹𝑢(𝐶𝜂(𝜇, 𝑟)).  

    • Fuzzy lower weakly contra 𝑒∗-continuous (𝐹𝐿𝑊𝐶𝑒∗-continuous, in short) at an 𝐿-fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈
𝐹𝑙(𝜇) for each 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed, there exists 𝑟-f𝑒∗o-set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝐶𝜂(𝜇, 𝑟)).  

    • 𝐹𝑈𝑊𝐶𝑒∗-continuous (resp. 𝐹𝐿𝑊𝐶𝑒∗-continuous) iff it is 𝐹𝑈𝑊𝐶𝑒∗-continuous (resp. 𝐹𝐿𝑊𝐶𝑒∗-continuous) at every 

𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹).  

 Proposition 4.1 42  𝐹 is normalized, then 𝐹 is 𝐹𝑈𝑊𝐶𝑒∗-continuous at a fuzzy point 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹) iff 𝑥𝑡 ∈ 𝐹𝑢(𝜇) for each 

𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed, there exists 𝑟-f𝑒∗o-set 𝜆 ∈ 𝐿𝑋 and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑢(𝐶𝜂(𝜇, 𝑟)).   

 Theorem 4.143   Let 𝐹: 𝑋¨𝑌 be a 𝐹𝑀 between two 𝐿-fts's (𝑋, 𝜏), (𝑌, 𝜂) and 𝜇 ∈ 𝐿𝑌 . Then 𝐹 is 𝐹𝐿𝑊𝐶𝑒∗-continuous if 

and only if 𝐹𝑙(𝜇) ≤ 𝑒∗𝐼𝜏(𝐹
𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟) for any 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed.   

    Proof. Let 𝐹 be 𝐹𝐿𝑊𝐶𝑒∗-continuous, 𝜇 ∈ 𝐿𝑌  and 𝜇 is 𝑟-fuzzy closed. If 𝑥𝑡 ∈ 𝐹𝑙(𝜇), there exixts 𝑟-f𝑒∗o set 𝜆 ∈ 𝐿𝑋 

and 𝑥𝑡 ∈ 𝜆 such that 𝜆 ≤ 𝐹𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟) and hence 𝜆 ≤ 𝑒∗𝐼𝜏(𝐹
𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟). Thus 𝐹𝑙(𝜇) ≤ 𝑒∗𝐼𝜏(𝐹

𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟). 

Conversely, let 𝑥𝑡 ∈ 𝑑𝑜𝑚(𝐹), 𝜇 ∈ 𝐿𝑌 , 𝜇 is 𝑟-fuzzy closed and 𝑥𝑡 ∈ 𝐹𝑙(𝜇). Then  

 𝑥𝑡 ∈ 𝐹𝑙(𝜇) ≤ 𝑒∗𝐼𝜂(𝐹
𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟) = 𝜆(𝑠𝑎𝑦). 

Thus, 𝑥𝑡 ∈ 𝜆 and 𝜆 is 𝑟-f𝑒∗o set such that  

 𝜆 = 𝑒∗𝐼𝜏(𝐹
𝑙(𝐶𝜂(𝜇, 𝑟)), 𝑟) ≤ 𝐹𝑙(𝐶𝜂(𝜇, 𝑟)). 

Hence, 𝐹 is 𝐹𝐿𝑊𝐶𝑒∗-continuous. 

 Theorem 4.244  Let 𝐹: 𝑋¨𝑌  be a 𝐹𝑀  and normalized between two 𝐿 -fts's (𝑋, 𝜏) , (𝑌, 𝜂)  and 𝜇 ∈ 𝐿𝑌 . Then 𝐹  is 

𝐹𝑈𝑊𝐶𝑒∗-continuous if and only if 𝐹𝑢(𝜇) ≤ 𝑒∗𝐼𝜏(𝐹
𝑢(𝐶𝜂(𝜇, 𝑟)), 𝑟) for any 𝜇 ∈ 𝐿𝑌 and 𝜇 is 𝑟-fuzzy closed.   

    Proof. This can be proved in a similar way as the above Theorem (4.1) 

 Remark 4.145  The following implications hold.   

    • 𝐹𝑈𝑊𝐶-continuous ⇒ 𝐹𝑈𝑊𝐶𝑒-continuous ⇒ 𝐹𝑈𝐴𝐶𝑒∗-continuous.  

    • 𝐹𝐿𝑊𝐶-continuous ⇒ 𝐹𝐿𝑊𝐶𝑒-continuous ⇒ 𝐹𝐿𝐴𝐶𝑒∗-continuous.  

The Converse of the above Remark (4.1) need not be true as shown by the following examples. 

 Example 4.146  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2, 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.1, 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0, 𝐺𝐹(𝑥2, 𝑦1) = 0.6, 𝐺𝐹(𝑥2, 𝑦2) = 1, and 𝐺𝐹(𝑥2, 𝑦3) = 0.3. Let 𝜆1  and 𝜆2  be a fuzzy subsets of 𝑋  defined as 

𝜆1(𝑥1) = 0.2, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.6 and 𝜇 be a fuzzy subset of 𝑌 defined as 𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 

𝜇(𝑦3) = 0.2. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 𝜂: 𝐿𝑌 → 𝐿 as follows:  

 1 1
1 22 2

1 0, 1 1 0, 1

( ) , ( )

0 0
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 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟=
1

2
, then 𝐹  is 𝐹𝑈𝑊𝐶𝑒-continuous but not 𝐹𝑈𝑊𝐶 -continuous because 1 − 𝜇  is 

1

2
-fuzzy closed in 𝑌 and 𝐹𝑢(1 − 𝜇) = 𝜆2 is not 

1

2
-fuzzy open set in 𝑋.   

 Example 4.247  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2, 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.1, 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0, 𝐺𝐹(𝑥2, 𝑦1) = 0.6, 𝐺𝐹(𝑥2, 𝑦2) = 1, and 𝐺𝐹(𝑥2, 𝑦3) = 0.3. Let 𝜆1 and 𝜆2 be a fuzzy subsets of 𝑋 be defined as 

𝜆1(𝑥1) = 0.2, 𝜆1(𝑥2) = 0.3; 𝜆2(𝑥1) = 0.9, 𝜆2(𝑥2) = 0.9 and 𝜇 be a fuzzy subset of 𝑌 defined as 𝜇(𝑦1) = 0.4, 𝜇(𝑦2) = 0.1, 

𝜇(𝑦3) = 0.2. We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy topologies 𝜏: 𝐿𝑋 → 𝐿 and 𝜂: 𝐿𝑌 → 𝐿 as follows:  

 1 1
1 22 2

1 0, 1 1 0, 1

( ) , ( )

0 0

if or if or

if if

otherwise otherwise

 

        

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 =
1

2
, then 𝐹 is 𝐹𝐿𝑊𝐶𝑒-continuous but not 𝐹𝐿𝑊𝐶-continuous because 1 − 𝜇 is 

1

2
-fuzzy closed in 𝑌, 𝐹𝑙(1 − 𝜇) = 𝜆2 is not 

1

2
-fuzzy open set in 𝑋.   
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 Example 4.348  Let 𝑋 = {𝑥1, 𝑥2} , 𝑌 = {𝑦1, 𝑦2, 𝑦3}  and 𝐹: 𝑋¨𝑌  be a FM defined by 𝐺𝐹(𝑥1, 𝑦1) = 0.1, 𝐺𝐹(𝑥1, 𝑦2) = 1 , 

𝐺𝐹(𝑥1, 𝑦3) = 0, 𝐺𝐹(𝑥2, 𝑦1) = 0.5, 𝐺𝐹(𝑥2, 𝑦2) = 0, and 𝐺𝐹(𝑥2, 𝑦3) = 1. Let 𝜆1 and 𝜆2 be a fuzzy subsets of 𝑋 be defined as 

𝜆1(𝑥1) = 0.3, 𝜆1(𝑥2) = 0.5; 𝜆2(𝑥1) = 0.4, 𝜆2(𝑥2) = 0.4 and 𝜇1  and 𝜇2  be a fuzzy subsets of 𝑌  defined as 𝜇1(𝑦1) = 0.5, 

𝜇1(𝑦2) = 0.5, 𝜇1(𝑦3) = 0.5 and 𝜇2(𝑦1) = 0.4, 𝜇2(𝑦2) = 0.4, 𝜇2(𝑦3) = 0.4 We assume that 1 = 1 and 0 = 0. Define 𝐿-fuzzy 

topologies 𝜏: 𝐿𝑋 → 𝐿 and 𝜂: 𝐿𝑌 → 𝐿 as follows:  

 1 1
1 1 22 2

1 0, 1 1 0, 1

( ) ( ) ,

0 0

if or if or

if if

otherwise otherwise

 

        

   
  

 
    
 
  

 

 are fuzzy topologies on 𝑋 and 𝑌. For 𝑟 =
1

2
, then 𝐹 is  

(i) 𝐹𝑈𝐴𝐶𝑒∗-continuous but not 𝐹𝑈𝑊𝐶𝑒-continuous because 𝜇2 is 
1

2
-fuzzy closed in 𝑌 and 𝐹𝑢(𝜇2) = 𝜆2 is not 

1

2
-feo set in 𝑋. 

(ii) 𝐹𝐿𝐴𝐶𝑒∗-continuous but not 𝐹𝐿𝑊𝐶𝑒-continuous because 𝜇2 is 
1

2
-fuzzy closed in 𝑌 and 𝐹𝑢(𝜇2) = 𝜆2 is not 

1

2
-feo set in 𝑋.    
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